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PREFACE

After visiting leading optics laboratories for the purpose of producing the educational
video Fiber Optic Labs from Around the World for the Institute of Electrical and
Electronics Engineers (IEEE), I soon realized there was a short supply of photonics
textbooks to accommodate the growing demand for photonics engineers and evolving
fiber-optic products. This textbook was written to help fill this need.

From my teaching experiences at Harvard University and the University of Toronto,
I learned a great deal about what students want in a textbook. For instance, students
hate messy mathematical expressions that hide the physical meaning. They want expla-
nations that start from the very basics, yet maintain simplicity and succinctness. Most
students do not have a lot of time to spend reading and looking up references, so they
value a well-organized text with everything at their fingertips. Furthermore, a textbook
with a generous allotment of numerical examples helps them better understand the
material and gives them greater confidence in tackling challenging problem sets. This
book was written with the student in mind.

The book amalgamates fundamentals with applications and is appropriate as a text
for a fourth year undergraduate course or first year graduate course. Students need
not have a previous knowledge of optics, but college physics and mathematics are
prerequisites.

Elements of Photonics is comprised of two volumes. Even though cohesiveness
between the two volumes is maintained, each volume can be used as a stand-alone
textbook.

Volume I is devoted to topics that apply to propagation in free space and special
media such as anisotropic crystals. Chapter 1 begins with a description of Fourier
optics, which is used throughout the book, followed by applications of Fourier optics
such as the properties of lenses, optical image processing, and holography.

Chapter 2 deals with evanescent waves, which are the basis of diffraction unlimited
optical microscopes whose power of resolution is far shorter than a wavelength of
light.

Chapter 3 covers the Gaussian beam, which is the mode of propagation in free-space
optical communication. Topics include Bessel beams characterized by an unusually
long focal length, optical tweezers useful for manipulating microbiological objects like
DNA, and laser cooling leading to noise-free spectroscopy.

Chapter 4 explains how light propagates in anisotropic media. Such a study is impor-
tant because many electrooptic and acoustooptic crystals used for integrated optics are
anisotropic. Only through this knowledge can one properly design integrated optics
devices.

xxv
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Chapter 5 comprehensively treats external field effects, such as the electrooptic
effect, elastooptic effect, magnetooptic effect, and photorefractive effect. The treat-
ment includes solid as well as liquid crystals and explains how these effects are
applied to such integrated optics devices as switches, modulators, deflectors, tunable
filters, tunable resonators, optical amplifiers, spatial light modulators, and liquid crystal
television.

Chapter 6 deals with the state of polarization of light. Basic optical phenomena such
as reflection, refraction, and deflection all depend on the state of polarization of the
light. Ways of converting light to the desired state of polarization from an arbitrary
state of polarization are explained.

Chapter 7 explains methods of constructing and using the Poincaré sphere. The
Poincaré sphere is an elegant tool for describing and solving polarization problems in
the optics laboratory.

Chapter 8 covers the phase conjugate wave. The major application is for optical
image processing. For example, the phase conjugate wave can correct the phasefront
distorted during propagation through a disturbing medium such as the atmosphere. It
can also be used for reshaping the light pulse distorted due to a long transmission
distance inside the optical fiber.

Volume II is devoted to topics that apply to fiber and integrated optics.
Chapter 9 explains how a lightwave propagates through a planar optical guide,

which is the foundation of integrated optics. The concept of propagation modes is
fully explored. Cases for multilayer optical guides are also included.

Chapter 10 is an extension of Chapter 9 and describes how to design a rectangular
optical guide that confines the light two dimensionally in the x and y directions. Various
types of rectangular optical guides used for integrated optics are compared. Electrode
configurations needed for applying the electric field in the desired direction are also
summarized.

Chapter 11 presents optical fibers, which are the key components in optical commu-
nication systems. Important considerations in the choice of optical fibers are attenuation
during transmission and dispersion causing distortion of the light pulse. Such special-
purpose optical fibers as the dispersion-shifted fiber, polarization-preserving fiber,
diffraction grating imprinted fiber, and dual-mode fiber are described. Methods of
cabling, splicing, and connecting multifiber cables are also touched on.

Chapter 12 contains a description of light detectors for laboratory as well as commu-
nication uses. Mechanisms for converting the information conveyed by photons into
their electronic counterparts are introduced. Various detectors, such as the photo-
multiplier tube, the photodiode, and the avalanche photodiode, and various detection
methods, such as direct detection, coherent detection, homodyne detection, and detec-
tion by stimulated Brillouin scattering, are described and their performance is compared
for the proper choice in a given situation.

Chapter 13 begins with a brief review of relevant topics in quantum electronics,
followed by an in-depth look at optical amplifiers. The optical amplifier has revolu-
tionized the process of pulse regeneration in fiber-optic communication systems. The
chapter compares two types of optical amplifier: the semiconductor optical amplifier
and the erbium-doped fiber amplifier. Knowledge gained from the operation of a single
fiber amplifier is applied to the analysis of concatenated fiber amplifiers.

Chapter 14 is devoted to lasers, which is a natural extension of the preceding chapter
on optical amplifiers. The chapter begins with an overview of different types of lasers,
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followed by an in-depth treatment of semiconductor lasers, which are the preferred light
sources for most fiber-optic communication systems. The basic relationship among the
laser structure, materials, and operational characteristics are clarified. The ability to tune
the laser wavelength, which is indispensible to the wavelength division multiplexing
of the communication system, is addressed. The quantum well, quantum wire, and
quantum dot laser diodes that have low threshold current and hence a high upper limit
on the modulation frequency are also included. The erbium-doped or Raman fiber
lasers that are simple in structure and easy to install in an optical fiber system are also
explained.

In Chapter 15, an introduction to the nonlinear (Kerr) effect is presented. Optical
devices based on the Kerr effect are controlled by photons and can respond much
faster than those controlled by electrons. The chapter also provides the mechanism of
formation of a soliton wave. A light pulse that propagates in an optical fiber spreads
due to the dispersion effect of the fiber, but as the intensity of the pulse is increased,
the nonlinear effect of the fiber starts to generate a movement directed toward the
center of the light pulse. When these two counteracting movements are balanced, a
soliton wave pulse that can propagate distortion-free over thousands of kilometers is
formed. The attraction of distortion-free pulse propagation is that it can greatly reduce,
or even eliminate, the need for pulse regenerators (repeaters) in long-haul fiber-optic
communication systems.

Chapter 16 interweaves the design skills developed throughout the book with real-
istic problems in fiber-optic communication systems.

The problems at the end of each chapter are an integral part of the book and
supplement the explanations in the text.

As a photonics textbook, each volume would be sufficient for a two-semester course.
If time is really limited, Chapter 16 alone can serve as a crash course in fiber-optic
communication systems and will give the student a good initiation to the subject.

For those who would like to specialize in optics, I highly recommend reading
through each volume, carefully and repeatedly. Each chapter will widen your horizon
of optics that much more. You will be amazed to discover how many new applications
are born by adding a touch of imagination to a fundamental concept.

This two-volume work has been a long time in the making. I applaud Beatrice Shube,
and George Telecki and Rosalyn Farkas of John Wiley & Sons for their superhuman
patience. Sections of the manuscript went through several iterations of being written,
erased, and then rewritten. As painstaking as this process was, the quality of the
manuscript steadily improved with each rewrite.

I am very grateful to Professor Joseph W. Goodman of Stanford University who
first suggested I publish my rough lecture notes in book form.

I am indebted especially to Mary Jean Giliberto, who spent countless hours proof-
reading the text, smoothing the grammatical glitches, and checking equations and
numerical examples for completeness and accuracy. I greatly valued her comments
and perspective during our many marathon discussions. This book was very much a
partnership, in which she played a key role.

I would like to express my gratitude to Dr. Yi Fan Li, who provided much input to
Chapter 15 on nonlinear optics, and Professor Subbarayan Pasupathy of the University
of Toronto and Professor Alfred Wong of the University of California, Los Angeles,
who critically read one of the appendixes. Frankie Wing Kei Cheng has double-checked
the equations and calculations of the entire book.
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I would also like to acknowledge the following students, who went through the
manuscript very critically and helped to refine it: Claudio Aversa, Hany H. Loka,
Benjamin Wai Chan, Soo Guan Teh, Rob James, Christopher K. L. Wah, and Megumi
Iizuka.

Lena Wong’s part in typing the entire manuscript should not be underestimated. I
also owe my gratidue to Linda Espeut for retyping the original one-volume manuscript
into the current two-volume manuscript. I wish to express my heartfelt thanks to my
wife, Yoko, and children, Nozomi, Izumi, Megumi, and Ayumi, for their kind sacrifices.
Ayumi Iizuka assisted in designing the cover of the book.

KEIGO IIZUKA

University of Toronto
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1

FOURIER OPTICS: CONCEPTS
AND APPLICATIONS

Welcome to the exciting field of photonics. Chapter 1 is a quick tour of Fourier optics, a
vital foundation for the chapters that follow. The branch of optics that can be analyzed
by means of the Fourier transform is known as Fourier optics. The presentation of
this subject is a condensed version of several texts on the subject [1–8]. This chapter
starts with expressions for plane waves and a collection of special functions that are
often used in photonics. The rest of the chapter is devoted to problems that can nicely
be solved by Fourier optics, including various diffraction patterns, thin lenses, optical
signal processing, spatial filters, and holography. A more rigorous derivation of the
diffraction equations is also added at the end.

1.1 PLANE WAVES AND SPATIAL FREQUENCY

The representation of plane waves is introduced first, followed by a discussion of
spatial frequency.

1.1.1 Plane Waves

The expression for a plane wave propagating in an arbitrary direction when observed
at an arbitrary point in space will be derived. Let’s first restrict ourselves to a two-
dimensional (2D) vacuum medium such as shown in Fig. 1.1a.

Let a plane wave observed at the origin at time t be expressed as

E�0, 0, t� D E0�0, 0�e�jωt �1.1�

where the vector E0�0, 0� represents the amplitude and direction of polarization, and
ω represents the angular frequency. In this book the sign convention of e�jωt rather
than ejωt is used. The direction of propagation associated with the sign convention is
discussed in the boxed note.

1
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Figure 1.1 Expression for a plane wave. (a) A plane wave propagating in the Oe direction and observed
at P�x, y� in 2D space. (b) The position vector r and direction Oe of propagation of a plane wave in 3D
space.

The direction of propagation is expressed by the unit vector

Oe D exOı C eyO �1.2�

where

ex D cos �, ey D sin � �1.3�

and Oı and O are unit vectors in the x and y directions, respectively.
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There are two equally valid conventions for expressing the time dependence of the electric
wave; they are ejωt and e�jωt. Depending on the choice of convention, the wave expression
is different.

Let’s take the expression

E D Re
[
E0e

j��ωtCˇz�
] D E0 cos��ωt C ˇz�

as an example.

0

E = E0e j (−wt+bz)

P P ′

z

Snapshot at t = 0

at t = ∆t

E D E0 e j��ωtCˇz� is a forward wave.

The peak occurs when the term within the cosine bracket equals zero. Therefore, when
a snapshot of the wave is taken at t D 0, the location of the peak is at z D 0. Now, another
snapshot is taken at t seconds later. The position z of the peak is again where the value of
the bracketed term is zero. The peak has moved to a positive new location at z D �ω/ˇ�t.
Thus, this equation represents a forward wave with the phase velocity

vp D ω/ˇ

On the other hand, as time increases with

E D E0 cos�ωt C ˇz�

the peak moves toward the negative z direction, z D ��ω/ˇ�t, and this represents the
backward wave.

The rule is, whenever the signs of t and z are different, as in E D E0ej��ωtCˇz� or E D
E0ej�ωt�ˇz�, the waves are forward waves; and whenever the signs are the same, as in E D
E0ej�ωtCˇz� or E D E0ej��ωt�ˇz�, the waves are backward waves. In this book the convention
of e�jωt is used, unless otherwise stated, because the forward wave E D E0ej��ωtCkz� has a
positive sign on the z.

Let us now observe this wave from the observation point P�x, y�, which is connected
to the origin by the position vector r,

r D xOı C yO �1.4�
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0Q is the distance between the origin and the projection of point P in the direction
of Oe as shown in Fig. 1.1a. If the field travels at the speed of light, the field observed
at point P is that which has left the origin 0Q/c seconds ago. 0Q can be represented
by the scalar product ê · r. Thus, the field E�x, y� observed at P is

E�x, y, t� D E0�0, 0�e�jω�t�ê·r/c� �1.5�

Equation (1.5) is rewritten as

E�x, y, t� D E0�0, 0�e�jωtCjk·r �1.6�

where

k D ω

c
Oe D 2�

�
Oe �1.7�

and where � is the wavelength in vacuum. k is called the vector propagation constant.
Using Eq. (1.2) the vector propagation constant k can be expanded in Cartesian coor-
dinates as

k D 2�

�
cos � Oı C 2�

�
sin � O �1.8�

Equation (1.6) is the expression for a plane wave propagating at a speed of c in the
Oe direction observed at point P. So far, we have assumed a refractive index equal to
1. Inside a linear medium with refractive index n, the frequency does not change, but
the wavelength is reduced to �/n and the speed of propagation is slowed down to a
velocity of v D c/n. Hence, the propagation constant becomes nk.

1.1.2 Spatial Frequency

Next, the vector propagation constant k will be rewritten in terms of spatial frequency.
It is important to note that spatial frequency is different from temporal frequency.
Temporal frequency f is defined as the number of wavelengths that pass through a
particular point in space per unit time, whereas spatial frequency fs is defined as the
number of wavelengths in a unit of distance:

fs D 1

�
�1.9�

The most popular unit of fs is lines/mm or lines/m. In the field of spectroscopy, fs is
called the wavenumber with units of cm�1.

The relationship between the spatial and temporal frequencies of a plane wave is

f D cfs �1.10�

Equation (1.10) was obtained by comparing Eq. (1.9) with the temporal frequency

f D c

�
�1.11�

The spatial frequency depends on the direction in which the unit distance is taken.
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Referring to Fig. 1.1a, we see that �x and �y are

�x D �

cos �

�y D �

sin �

�1.12�

The spatial frequencies in these directions are

fx D 1

�x
D exfs

fy D 1

�y
D eyfs

fs D 1

�

�1.13�

where Eq. (1.3) was used.
Earlier, we derived the propagation vector k to be

k D 2�
(

cos �

�
i C sin �

�
j
)

in Eq. (1.8). This can now be expressed more elegantly using Eq. (1.12) as

k D 2�
(

1

�x
Oı C 1

�y
O
)

D 2��fxOı C fyO�

where, to repeat, fx and fy are spatial frequencies. From this, it follows that k · r is
expressed as

k · r D 2�fxx C 2�fyy �1.14�

From Eq. (1.12), we obtain

(
1

�

)2

D
(

1

�x

)2

C
(

1

�z

)2

which can be rewritten as

f2
s D f2

x C f2
y �1.15�

Finally, the two-dimensional expression will be extended into three dimensions by
adding a unit vector Ok in the z direction. The direction of propagation Oe becomes

Oe D exOı C eyO C ez Ok �1.16�
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With the coordinates shown in Fig. 1.1b, the components of the unit vector Oe are

ex D sin � cos �

ey D sin � sin �

ez D cos �

�1.17�

With � 6D 90° in Eq. (1.17), the expression corresponding to Eq. (1.8) is

k D 2�
cos �

�
sin � Oı C 2�

sin �

�
sin � O C 2�

cos�

�
Ok �1.18�

and

�x D �

cos � sin �

�y D �

sin � sin �

�z D �

cos �

�1.19�

and in terms of spatial frequencies,

fx D 1

�x
D fsex

fy D 1

�y
D fsey

fz D 1

�z
D fsez

fs D 1

�

�1.20�

The three-dimensional (3D) position vector r is

r D xOı C yO C z Ok �1.21�

Similar to the two-dimensional case, E is expressed as

E�x, y, z, t� D E�0, 0, 0�e�jωtCjk·r �1.22�

where

k · r D 2�fxx C 2�fyy C 2�fzz �1.23�

and where

f2
s D f2

x C f2
y C f2

z �1.24�
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Example 1.1 For a plane wave propagating in the direction

� D 30°, � D 45°

find the expression for the field when observed at point P�1, 2, 3� ð 10�6 m. The
free-space wavelength is � D 1.55 µm. The vector E0 representing the polarization is
Oı C 2O � 1.86 Ok.

Solution From the value k · r in Eq. (1.23) and from Eqs. (1.19) and (1.20), the x
component is

kxx D 2�fxx

D 2�

�
exx

D 2�

�
sin � cos � Ð x

D 2.48

Similarly, the y and z components are

kyy D 2.86

kzz D 8.60

and

ω D 2�c

�
D 1.22 ð 1015 rad/s

From Eq. (1.22), the expression for E is

E[�1, 2, 3� ð 10�6, t] D �Oı C 2O � 1.86 Ok�ej13.94�j1.22ð1015t �

Example 1.2 A plane wave propagating in a given medium is expressed as

E�x, y, z, t� D E0e
j�2xC3yC4z�ð106�j1015t �1.25�

(a) Find the unit vector for the direction of propagation.
(b) What are the values of � and � that characterize the direction of propagation?
(c) Find the refractive index of the medium.
(d) Find the vector expression of E0 of Eq. (1.25), assuming that E0 is polarized

in the x D x1 plane and the amplitude is 5.0.

Solution
(a) The direction of the vector parallel to the propagation direction is 2i C 3j C 4k.

The unit vector is found by normalizing this vector. The result is

Oe D 1p
29

�2Oı C 3O C 4 Ok�
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and therefore

Oe D 0.37Oı C 0.56O C 0.74 Ok

(b) The direction of the unit vector in terms of � and � can be solved for by using
Eq. (1.17):

� D 56.3°

� D 42.0°

(c) In order to determine the refractive index n, the velocity of the wave needs to
be determined since n D c/v. The velocity is expressed by the product of the temporal
frequency and the wavelength or v D f�. The first part of the exponential term of
Eq. (1.25) contains the wavelength information whereas the second term contains the
temporal frequency information.

To solve for the wavelength, the spatial frequency fs is first obtained from its
components fx, fy , and fz. Explicitly,

k · r D 2��fxx C fyy C fzz� D �2x C 3y C 4z� ð 106

where

fx D 2 ð 106

2�
lines/m

fy D 3 ð 106

2�
lines/m

fz D 4 ð 106

2�
lines/m

and hence fs D 0.86 ð 106 lines/m from the sum of the squares.
The inverse of the spatial frequency is the wavelength and is equal to

� D 1.17 ð 10�6 m

From the second part of the exponential term in Eq. (1.25) we now obtain the temporal
frequency, which is

f D 1015

2�
D 1.59 ð 1014 Hz

Hence, the phase velocity v is

v D �f D 1.86 ð 108 m/s

Finally, from the velocity we obtain the refractive index

n D c

v
D 1.61
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(d) Let the amplitude vector be

E0 D �aOı C bO C c Ok�

With a plane wave, the direction of polarization is perpendicular to the direction of
propagation. Thus, their dot product should be zero:

E0 · ê D 0

Since E0 is polarized in the x D x1 plane, it follows that

a D 0

and

eyb C ezc D 0

From Eq. (1.25), and the given magnitude of 5, a pair of equations are obtained that
can be solved for b and c, namely,

3b C 4c D 0

b2 C c2 D 52

Hence, the vector expression of E0 is

E0 D š�4O � 3 Ok� �

1.2 FOURIER TRANSFORM AND DIFFRACTION PATTERNS IN
RECTANGULAR COORDINATES

Referring to Fig. 1.2a, the field distribution from a source is observed on a screen. The
field distribution on the screen is called a diffraction pattern.

We will demonstrate that the diffraction pattern can be elegantly expressed by the
Fourier transform of the source. Let E�xi, yi� represent the field at point P on the
screen placed a distance zi away from the source field E�x0, y0�. The distributed source
E�x0, y0� is considered as an ensemble of point sources. Each point source radiates a
spherical wave. The field at the observation point P is comprised of contributions from
an ensemble of fields radiated from all the point sources. The contribution of the point
source located at �x0, y0� to point P at �xi, yi� is

dE�xi, yi� D ejkr

r
E�x0, y0�dx0 dy0 �1.26�

where E�x0, y0� is the magnitude of the point source located at �x0, y0� and r is the
distance between �x0, y0� and �xi, yi�. The distance r is expressed as

r D
√

z2
i C �xi � x0�2 C �yi � y0�2 �1.27�
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Source
x0 xi

at (x0, y0)
dx0 dy0

y0

y0 yi

yi

P (xi,yi)

0
q

f

z

Screen
(a)

(b)

r

f

f

l

0 zi z

ScreenAperture

Observation point

Constant phase

Constant
amplitude

P

zi

Figure 1.2 Field distribution from a source observed on a screen. (a) Geometry. (b) Distribution of
the field in the �yi, zi� plane.

The contribution of the spherical waves from all the point sources to E�xi, yi� is

E�xi, yi� D K
∫∫

ejkr

r
E�x0, y0�dx0 dy0 �1.28�

This equation is known as the Fresnel–Kirchhoff diffraction formula. The amplitude
of the diffracted field is inversely proportional to its wavelength and is expressed as

K D 1

j�
�1.29�

The constant K will be derived later in Appendix A of Volume I.
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If the point of observation is far enough away or in the vicinity of the z axis
(paraxial),

z2
i × �xi � x0�

2 C �yi � y0�
2 �1.30�

then the distance r can be simplified by the binomial expansion as

r � zi

(
1 C �xi � x0�2 C �yi � y0�2

2z2
i

)
�1.31�

which can be rewritten as

r ¾D zi C x2
i C y2

i

2zi
� xix0 C yiy0

zi
C x2

0 C y2
0

2zi
�1.32�

The region of zi for which the approximate expression Eq. (1.32) is valid is called the
Fresnel region or the near-field region. As the distance is further increased in the z
direction, the last term in Eq. (1.32) becomes negligible for the finite size of the source.
This region of zi is called the Fraunhofer region or far-field region. In this chapter we
are concerned about the far-field. In the far-field region, the approximation for r is

r D zi C x2
i C y2

i

2zi
� xix0 C yiy0

zi
�1.33�

By substituting this approximation into the exponential term of the Fresnel–Kirchhoff
diffraction formula, Eq. (1.28), the field becomes

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

∫∫ 1

�1
E�x0, y0�e

�j2��fxx0Cfyy0� dx0 dy0

with fx D xi

�zi
, fy D yi

�zi
�1.34�

We recognize that the integral is the two-dimensional Fourier transform of the field in
the x, y domain into the fx, fy domain:

Ffg�x, y�g D
∫∫ 1

�1
g�x, y�e�j2��fxxCfyy� dx dy �1.35�

Or in mathematical terms, the diffraction pattern is

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]FfE�x0, y0�gfxDxi/�zi, fyDyi/�zi �1.36�

where F denotes the Fourier transform.
In short, the Fraunhofer diffraction pattern is the Fourier transform of the source

field.
Sometimes, the angular distribution rather than the planar distribution is desired.

For this case, the azimuth angle � and the elevation angle �, measured with respect
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to the center of the source field, are approximated as sin � � xi/zi and sin � � yi/zi.
Hence, the values in Eq. (1.34) are

fx D sin �

�
, fy D sin �

�
�1.37�

The branch of optics that can be analyzed by means of the Fourier transform is
categorized as Fourier optics. First, the physical meaning of fx and fy in Eq. (1.34)
will be explored. For simplicity, only the distribution in the �yi, zi� plane will be
considered. Figure 1.2b shows a typical phase and amplitude distribution of the field
diffracted from an aperture source whose dimensions are much smaller than the distance
to the screen.

In the region far from the aperture, the phase distribution is more like that of a spher-
ical wave. With the source placed at the origin, the phase front along the yi axis near
yi D 0 is always parallel to the yi axis. In the vicinity of this point, there is no variation
in the phase of the field with respect to yi. Hence, the field has zero spatial frequency at
yi D 0. (The variation of the field amplitude with yi is normally much slower than that
of the phase.) As shown in Fig. 1.2b, the change in the variation of phase increases as
the point of observation P moves along the yi axis, such that, eventually, the wavelength
�yi measured along the yi axis will approach the wavelength of free space.

Mathematically, �yi at the observation point P�yi, zi� is, from the geometry in
Fig. 1.2b,

�yi D �

sin �

4.50

Microwave oven door shields us from microwaves but not from light.

How is it that a microwave oven door shields us from microwaves but not from light
waves, allowing us to see our food as it cooks? The answer is found by examining the
Fresnel–Kirchhoff diffraction formula applied to the mesh of our microwave oven door. The
mesh is equivalent to a series of equally spaced apertures. Hence, this causes diffraction to
occur, and the Fresnel–Kirchhoff equation, Eq. (1.34), is used to calculate the diffracted field.

Let us calculate the amplitude of the microwave and light wave field observed at the
center: xi D yi D 0. The integral in Eq. (1.34) is the same for both microwaves and light,
but as shown by the factor K of Eq. (1.29), the amplitude of the field is inversely proportional
to the wavelength. Thus, the amplitude of the microwaves is about 10,000 times smaller than
that of light. Thank goodness for the presence of K.
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The field located at P, therefore, has the spatial frequency of

fyi D sin �

�
¾D yi

zi�

If we wish to construct a spatial frequency filter to pick selectively a particular fyi

spatial frequency, we can place an opaque screen in the �xi, yi� plane and poke a hole
in it at a particular location. The location of this hole for a desired spatial frequency
can be calculated by rearranging the above equation to give

yi D fyi�zi

The usefulness of Eq. (1.36) extends throughout the electromagnetic spectrum. For
example, the inverse of this calculation is used in X-ray crystallography. By knowing
the X-ray diffraction pattern of a crystal, the structure of the crystal is found by its
inverse Fourier transform. The same is true with radio astronomy. By probing E�xi, yi�,
the radio radiation pattern of a star, the structure can be analyzed by the inverse Fourier
transform in a similar manner. Yet another application is to use this relationship to find
the radiation pattern of an antenna (Problem 1.4). The antenna radiation pattern for a
given current distribution I�x0, y0� can be obtained [9]. With a few simple substitutions,
E�x0, y0� is replaced by 1

2$I�x0, y0� sin �, where $ D 120� is the intrinsic impedance
of free space, and sin � is necessary to convert Ez to E� , since antenna theory expresses
its patterns in terms of E�.

Before closing this section, we will demonstrate that the Fresnel field or the near
field can also be expressed in terms of the Fourier transform. As previously stated,
the Fresnel region is valid when r is approximated with the addition of the quadratic
phase factor term of the source in Eq. (1.32). By similarly substituting this value of r
into the Fresnel–Kirchhoff diffraction formula, the field in the Fresnel region becomes

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]F

{
E�x0, y0�︸ ︷︷ ︸

Input

ejk�x2
0Cy2

0�/2zi︸ ︷︷ ︸
Part of the

point spread
function

}
fxDxi/�zi,fyDyi/�zi

�1.38�
Alternatively, the Fresnel field can be expressed elegantly as a convolution of two

terms explained as follows. Recall that the approximation of r, the distance to the
screen, is from Eq. (1.31)

r D zi

(
1 C �xi � x0�2 C �yi � y0�2

2z2
i

)

When r is directly substituted into the Fresnel–Kirchhoff diffraction formula,
Eq. (1.28), the result is

E�xi, yi� D j
1

�zi

∫∫
E�x0, y0�fejkzi[1C�xi�x0�2/2z2

i C�yi�y0�2/2zi2]gdx0 dy0
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The expression in the curly brackets is in the form of f�xi � x0, yi � y0�. From this
observation, we note that the above expression takes on the form of a convolution:

g�x� Ł f�x� D
∫

g�%�f�x � %�d%

Thus,

E�xi, yi� D E0�xi, yi� Ł fzi�xi, yi� �1.39�

where

fzi�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi] �1.40�

The function fzi�xi, yi� is called the point spread function (or impulse response function
of free space) and is identical with the field at �xi, yi, zi� when a point source is placed
at the origin of the source coordinates. Whether Eq. (1.38) or (1.39) is used, the results
are the same.

The Fourier transform Fzi of the point spread function in Eq. (1.40) is

Fzi D ejkzi�j��zi�f2
x Cf2

y � �1.41�

The derivation of Eq. (1.41) is found in the boxed note.

The Fourier transform Fzi of the point spread function fzi , given by Eq. (1.41), will be
derived. Let’s start with the easy to remember Fourier transform [10]

Ffe��x2 g D e��f2

The Fourier transform of this function is the original function itself.
First, the xi component of Eq. (1.40) is rewritten as

ejkx2
i /2zi D e[���xi/

p
j�zi�2]

The similarity theorem of the Fourier transform is

Ffg�˛x�g D 1

˛
G

(
fx

˛

)
�1.42�

where G is the Fourier transform of g�x�. If Eq. (1.42) is used, the Fourier transform of the
xi component is

Ffe[���xi/
p

j�zi�
2]g D√j�zie

�j��zif
2
x

For the two-dimensional case, the Fourier transform is

Ffejk�x2
i Cy2

i �/2zig D j�zie
�j��zi�f2

x Cf2
y � �1.43�

Hence, the Fourier transform of the point spread function is

F
{

1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

}
D ejkzi�j��zi�f2

x Cf2
y � �1.44�
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Example 1.3 A Fresnel diffraction pattern observed at a certain distance away from
the source is identical with that obtained by a series of diffractions taking place
successively from one fictitious plane after another up to the screen. This phenomenon
is related to Huygens’ principle. Prove this using the example of dividing the distance
zi into d1 and d2.

Solution Let the source function be E0�x, y�. The distance zi to the screen is arbitrarily
divided into two, d1 and d2, with zi D d1 C d2 as shown in Fig. 1.3. The diffraction
pattern on a fictitious screen at distance d1 will be used as the input for another
diffraction pattern on a screen at an additional distance d2. This result will be compared
with that obtained when a single diffraction pattern impinges directly from the input
onto the screen at distance zi D d1 C d2.

From Eq. (1.39), the diffraction pattern of E0�x, y� on the fictitious screen at d1 is

E1�x, y� D E0�x, y� Ł fd1�x, y� �1.45�

The diffraction pattern of E1�x, y� on the screen at an additional distance d2 is

E2�xi, yi� D E0�xi, yi� Ł fd1�xi, yi� Ł fd2�xi, yi� �1.46�

(a)

(b)

Input
E0(x,y)

Input
E0(x,y)

Fictitious
intermediate
screen

Diffraction
pattern on the
screen E(xi,yi)

Diffraction
pattern on the
screen E (xi ,yi)

d1 d2

d1+ d2

Figure 1.3 Comparison of diffraction patterns with and without a fictitious screen. (a) Two-step
diffraction. (b) One-step diffraction.
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The Fourier transform and inverse Fourier transform are successively performed to
make use of the product rule of Fourier transforms. The result is

E2�xi, yi� D F�1fε�fx, fy� Ð Fd1�fx, fy� Ð Fd2�fx, fy�g �1.47�

From Eq. (1.41),

E2�xi, yi� D F�1fε�fx, fy�e
jk�d1Cd2�e�j���d1Cd2��f2

x Cf2
y �g �1.48�

where ε�fx, fy� is the Fourier transform of E0�x, y�. From Eq. (1.39), the one-step
calculation of the diffraction pattern on the screen over the distance zi is

E2�xi, yi� D E0�xi, yi� Ł fd1Cd2�xi, yi� �1.49�

Thus, the result of the single diffraction is identical with successive diffractions.
This fact conforms with Huygens’ principle that a wave propagates by creating new
wavefronts from the pattern of the old wavefront. �

1.3 FOURIER TRANSFORM IN CYLINDRICAL COORDINATES

Photographic plates are rectangular, but most optical components like lenses, retarders,
and apertures are cylindrically symmetric. The relationships between rectangular spatial
coordinates �x, y� and spatial frequency coordinates �fx, fy� and cylindrical spatial
coordinates �r, �� and spatial frequency coordinates �*, �� are

x D r cos � fx D * cos �

y D r sin � fy D * sin �

dx dy D r dr d� dfx dfy D * d* d�

�1.50�

This relationship is illustrated in Fig. 1.4. The two-dimensional Fourier transform in
rectangular coordinates

G�fx, fy� D
∫∫ 1

�1
g�x, y�e�j2��fxxCfyy� dx dy �1.51�

is converted into cylindrical coordinates using the relationships of Eq. (1.50) as

G�*, �� D
∫ 1

0

∫ 2�

0
g�r, ��e�j2�*r cos�����r dr d� �1.52�

In order to simplify the calculation of the double integral, g�r, �� is first separated
into functions of r and �. Since g�r, �� is periodic with respect to � with period 2�, it
can be expanded into a Fourier series as

g�r, �� D
1∑

nD�1
ane

j2��n/T�� �1.53�
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q

r

y

y P

0

(a)

x x
f

r

fy

fy

P

0

(b)

fxfx

Figure 1.4 Change of coordinates from rectangular to cylindrical. (a) Space domain. (b) Spatial
frequency domain.

where the coefficient an is

an D 1

T

∫ T/2

�T/2
g�r, ��e�j2��n/T�� d� �1.54�

Substituting 2� for the period T gives

g�r, �� D
1∑

nD�1
gn�r�e

jn� �1.55�

where

gn�r� D 1

2�

∫ �

��
g�r, ��e�jn� d� �1.56�

Inserting Eq. (1.55) into (1.52) gives

G�*, �� D
1∑

nD�1

∫ 1

0
r dr

∫ 2�

0
gn�r�e

jn��j2�*r cos����� d� �1.57�

The integral with respect to � can be expressed in terms of the Bessel function of the
first kind of nth order [10] as

Jn�z� D 1

2�

∫ 2�C˛

˛
ej�nˇ�z sin ˇ� dˇ �1.58�

Noting that

cos�� � �� D sin�� � � C �/2� �1.59�

and letting

ˇ D � � � C �/2 �1.60�
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and inserting Eqs. (1.58), (1.59), and (1.60) into (1.52) finally gives

G�*, �� D
1∑

nD�1
��j�nejn�2�

∫ 1

0
rgn�r�Jn�2�*r� dr �1.61�

where gn�r� is given by Eq. (1.56). Conversely, the inverse Fourier transform is given
by

g�r, �� D
1∑

nD�1
�j�nejn�2�

∫ 1

0
*Gn�*�Jn�2�*r� d* �1.62�

where

Gn�*� D 1

2�

∫ �

��
G�*, ��e�jn� d� �1.63�

When n 6D 0, the Fourier transform in cylindrical coordinates is called the
Fourier–Hankel transform of the nth order. When n D 0, it is called the Fourier–Bessel
transform and is written as Bfg�r�g D G�*�, and B�1fG�*�g D g�r�.

For the special case where there is no � dependence, such as a circular aperture,
then

g�r, �� D g�r� �1.64�

and Eq. (1.56) becomes

gn�r� D g�r�

2�

∫ �

��
e�jn� d�

D g�r�

2�

[
e�jn�

�jn

]�
��

D
{

g�r� n D 0
0 n 6D 0

�1.65�

Terms with nonzero n disappear from Eqs. (1.61) and (1.62), and these equations
simplify to

G�*� D 2�
∫ 1

0
rg�r�J0�2�*r� dr �1.66�

g�r� D 2�
∫ 1

0
*G�*�J0�2�*r� d* �1.67�

which are, as mentioned above, the Fourier–Bessel transform Bfg�r�g and its inverse
B�1fG�*�g.

Example 1.4 Find the Fourier–Hankel transform of a circular aperture with a one-
sixth section obstruction as shown in Fig. 1.5.
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60°
0a

Figure 1.5 Circular aperture with obstruction.

Solution G�*, �� D whole circle � wedge portion. The wedge portion is expanded
into a Fourier series as

gn�r� D 1

2�

∫ �/6

��/6
g�r, ��e�jn� d� �1.68�

D 1

2�

[
e�jn�

�jn

]�/6

��/6

gn�r� D



1

n�
sin

n�

6
n 6D 0

1
6 n D 0

�1.69�

G�*, �� D 2�
∫ a

0
rJ0�2�*r� dr

� 2
1∑

n D �1
except n D 0

��j�n
ejn�

n
sin
(n�

6

) ∫ a

0
rJn�2�*r� dr

� �

3

∫ a

0
rJ0�2�*r� dr �1.70�

G�*, �� D 5�

6

a

*
J1�2�*a� � 2

1∑
n D �1

except n D 0

��j�n
ejn�

n
sin
(n�

6

) ∫ a

0
rJn�2�*r� dr

�1.71�

�

Fourier transforms performed in either rectangular or cylindrical coordinates provide
the same results, but one is usually more convenient than the other.
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Now that the significance of the Fourier transform has been demonstrated, the
next section describes representations of the source shape function and their Fourier
transforms.

1.4 SPECIAL FUNCTIONS IN PHOTONICS AND THEIR FOURIER
TRANSFORMS

1.4.1 Rectangle Function

An aperture function of unit width can be represented by the rectangle function. The
rectangle function �x� shown on the left in Fig. 1.6a is defined as

�x� D
{

1 jxj � 1
2

0 jxj > 1
2

�1.72�

The Fourier transform of the rectangle function is

Ff�x�g D
∫ 1/2

�1/2
e�j2�fx dx

1
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Figure 1.6 The rectangular function �x� and �x/a�. (a) �x� and its Fourier transform. (b) �x/a�
and its Fourier transform.
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D
[
e�j2�fx

�j2�f

]1/2

�1/2

D sin �f

�f
�1.73�

The right-hand side of Eq. (1.73) is the sinc function, defined as

sinc�f� D sin �f

�f
�1.74�

As indicated in Fig. 1.6a, the main lobe of sinc�f� has a width of 2, as measured
along the f axis, and attains unit height at f D 0. Side lobes decrease in height
as jfj increases. The extrema of sinc(f) occur when f is near an odd multiple
of 1

2 , and the zeros of sinc(f) are located at every integer. The height of the
first side lobe is approximately 0.21 that of the main lobe. Now, let us extend the
definition of Eq. (1.72) to an aperture with width a. The rectangle function for such
an aperture is


(x

a

)
D
{

1 jxj � a/2
0 jxj > a/2

�1.75�

The Fourier transform is

F
{

(x

a

)}
D
∫ a/2

�a/2
e�j2�fx dx

D a sinc�af�

�1.76�

Equation (1.76) certainly can be derived directly using the similarity theorem of the
Fourier transform, Eq. (1.42). As indicated in Fig. 1.6b, sinc(af) also has its main
lobe at f D 0, but its height is a. The width of the main lobe is now 2/a. Side lobes
with decaying amplitudes appear with extrema near odd multiples of 1/2a and zeros
at integral multiples of 1/a. The ratio of the height of the first side lobe to the main
lobe still remains at 0.21.

1.4.2 Triangle Function

The triangle function is defined as

�x� D
{

1 � jxj jxj � 1
0 jxj > 1

�1.77�

and is shown on the left in Fig. 1.7. Unlike �x�, the width of the base is 2. The fact
that the triangle function can be generated from the convolution of two rectangular
functions makes the calculation of the Fourier transform simple:

�x� D �x� Ł �x� �1.78�

and

Ff�x�g D sinc2�f� �1.79�
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Figure 1.7 The triangle function �x� and its Fourier transform.

The triangle function with base width 2a can be expressed as the convolution of two
rectangular functions as


(x

a

)
D 1

a

( x

a

)
Ł 

( x

a

)
�1.80�

Since the convolution of �x/a� at f D 0 is a, the factor 1/a is necessary in Eq. (1.80)
to make �x/a� unity at f D 0. The Fourier transform of Eq. (1.80) is

F
{

( x

a

)}
D a sinc2�af� �1.81�

The graph of �x� with its Fourier transform is shown in Fig. 1.7. Compared to
sinc(f), the side lobes of sinc2�f� are significantly lower in height. An input aperture
having a �x0� distribution is used to reduce the side lobes in its diffraction pattern.
This technique is called apodizing to reduce the side lobes. Apodal means a creature
without legs, as, for example, eels or whales. Apodization of a lens is performed by
darkening the lens toward the edge of the lens. Apodization of a radiation pattern from
an antenna array is achieved by reducing the element antenna current toward the edge
of the array [9].

The intensity pattern I�xi, yi� of the diffracted field is expressed as

I�xi, yi� D E�xi, yi�E
Ł�xi, yi� �1.82�

The field intensity patterns of the diffraction from a normal and an apodized slit are
obtained by inserting Eqs. (1.76) and (1.79) into Eqs. (1.36) and (1.82) as

Is�xi, yi� D
(

a

�zi

)2

sinc2
(

a

�zi
xi

)
υ2�yi� �1.83�

Ias�xi, yi� D
(

a

�zi

)2

sinc4
(

a

�zi
xi

)
υ2�yi� �1.84�

where υ is the delta function (see Section 1.4.5). The field intensity, which is EEŁ, is
not the same as the power intensity, which is 1/$jEj2 (see Section 2.3.1).

Examples of a normal and an apodized slit are shown in Fig. 1.8a, and the
corresponding intensity patterns of the diffraction are compared in Fig. 1.8b. The
reduction of the side lobe levels by the apodization is clearly demonstrated.
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a

(a)

(b)

a

(1) (2)

(1) (2)

Figure 1.8. Comparison of (1) a normal slit and (2) an apodized slit. (a) Geometry of the apertures.
The dark portions are the openings. (b) Diffraction patterns.

Example 1.5 Find the Fraunhofer diffraction pattern of a rectangular aperture with
dimensions a ð l.

Solution The input function is given by

E�x0, y0� D 
(x0

a

)

(y0

l

)
�1.85�

The field E�xi, yi� in the z D zi plane is found from Eqs. (1.36) and (1.85):

E�xi, yi� D al

j�zi
ejk[ziC�x2

i Cy2
i �/2zi] sinc

(
a

xi

�zi

)
sinc

(
l
yi

�zi

)
�1.86�
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It should be noted that x0 and y0 are independent variables. Equation (1.86) is not the
convolution of the two sinc functions but the product of the two.

The aperture and a photograph of its diffraction pattern are shown in Fig. 1.9.
An important feature of the diffraction pattern is that the width of the main lobe is
narrowed with widening of the aperture. To remember the concept, think of a water
hose. The narrower the nozzle is pinched, the wider the water is sprayed. The smaller
the structure of the source (or object), the wider the radiation pattern becomes. X-ray
crystallography uses this fact very wisely to analyze molecular structure. The X-ray
pattern scattered from an angstrom-sized structure is enlarged enough to be recorded
by an ordinary photographic plate. �

l

a

(a)

(b)

Figure 1.9 A rectangular aperture and its far-field diffraction pattern. (a) Geometry. The dark portion
is the opening. (b) Diffraction pattern.

F

A firefighter knows that a narrower nozzle expands the beam. In the same way, a narrower source
produces a larger diffraction pattern.
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1.4.3 Sign and Step Functions

The sign function, sgn x, is positive unity for positive values of x and negative unity
for negative values of x:

sgn�x� D
{ 1 x > 0

0 x D 0
�1 x < 0

�1.87�

It is used to express a phase reversal at x D 0. The Fourier transform of Eq. (1.87) is

Ffsgn�x�g D lim
˛!0

[∫ 0

�1
��1�e�j2�fxC˛x dx C

∫ 1

0
e�j2�fx�˛x dx

]
�1.88�

The presence of ˛ is necessary to perform the integral. After integration, ˛ is reduced
to zero. The result is

Ffsgn�x�g D 1

j�f
�1.89�

The step function, H�x�, is immediately generated from the sign function:

H�x� D 1
2 [1 C sgn�x�] �1.90�

The step function is used to mask one-half of a plane. Its Fourier transform is

FfH�x�g D 1

2

(
υ�f� C 1

j�f

)
�1.91�

where υ represents the delta function and is explained in Section 1.4.5.
Figure 1.10 shows the geometry of the step function and its diffraction pattern. It

is worth noting that even though the aperture does not have symmetry with respect to
x0 D 0, the intensity pattern of the diffraction has a symmetry with respect to the edge
at x0 D 0. The streak pattern is always perpendicular to the direction of the edge, and
its intensity decreases monotonically with distance away from the edge.

1.4.4 Circle Function

In order to describe a circular aperture, the circle function shown in Fig. 1.11a is
defined as

circ�r� D
{

1 r � 1
0 r > 1

�1.92�

The Fourier transform of the circle function is found from Eq. (1.66):

Bfcirc�r�g D 2�
∫ 1

0
rJ0�2�*r� dr �1.93�

The Bessel function has the property

xnJn�1�x� D d

dx
[xnJn�x�] �1.94�
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1

H(x0)

(a)

(b)

(c)

0 x0

Figure 1.10 Diffraction from a semi-infinite screen. (a) Semi-infinite screen. (b) Step function.
(c) Diffraction pattern.

Substituting n D 1 in Eq. (1.94) and integrating both sides of the equation gives∫
xJ0�x� dx D xJ1�x� �1.95�

Using x D 2�*r, Eq. (1.93) becomes

Bfcirc�r�g D 2�
1

�2�*�2

∫ 2�*

0
xJ0�x� dx

D 2�

�2�*�2
[xJ1�x�]

2�*
0

Bfcirc�r�g D 1

*
J1�2�*� �1.96�
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Figure 1.11 The circle function. (a) Geometry. (b) Fourier transform. (c) Diffraction pattern.

The graph of Eq. (1.96) is shown in Fig. 1.11b. The similarity theorem for the
Fourier–Bessel transform does not follow Eq. (1.42); that is,

Bfg�ar�g D 1

a2
G
(*
a

)
�1.97�

and

B
{

circ
( r

a

)}
D a

*
J1�2�*a� �1.98�

The circle function and its Fourier transform are shown in Figs. 1.11a and 1.11b,
respectively. The intensity pattern of the diffraction from the circular aperture with
radius a is

I�ri� D
(

a2

�zi

)2 (
J1�2�a*�

a*

)2

�1.99�

with

* D ri
�zi
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which can be rewritten as

I�ri� D
(

ka2

zi

)2 (
J1�kari/zi�

kari/zi

)2

�1.100�

where ri is the radial coordinate in the plane of the diffraction pattern. This diffraction
pattern was first derived by Sir George Biddell Airy and is referred to as the Airy
pattern. The diffraction photograph is shown in Fig. 1.11c.

1.4.5 Delta Function

The delta function υ�x� is conveniently made to represent a point source [10]. Its
amplitude is confined within a minute range of x D šε, while it is zero outside this
range, as shown in Fig. 1.12a. The amplitude grows to infinity as ε shrinks to zero, but
in such a way that the area enclosed by the curve is always unity. In the limit ε ! 0,
υ�0� ! 1, while satisfying ∫ ε

�ε
υ�x� dx D 1 �1.101�

The delta function is most often used in an integral form:∫ 1

�1
f�x�υ�x � a� dx D f�a� �1.102�

The integrand is shown in Fig. 1.12b. The region where the product is nonzero is only
at x D a š ε. Consequently, f�x� in this region can be approximated by the constant

δ(x)

0

(a) (b)

x

f (a)

f (x)

Delta functiony

−e e 0 x = a

Figure 1.12 Diagram showing
∫

f�x�υ�x � a�dx D f�a�. (a) Delta function. (b) Integral including the
delta function.
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value f�a�, and the constant f�a� can be brought outside the integral. The integral of
the delta function is unity and Eq. (1.102) holds. Equation (1.102) is used to sample
(or sift) the value of f�x� at x D a. This is called the sifting property of the delta
function.

The Fourier transform of the delta function is

Ffυ�x�g D
∫ 1

�1
e�j2�fxυ�x� dx �1.103�

Since the delta function samples the value of e�j2�fx at x D 0, Eq. (1.103) becomes

Ffυ�x�g D 1 �1.104�

Next, the inverse Fourier transform of υ�f� is considered. The inverse Fourier transform
uses ej2�fx instead of e�j2�fx on the right-hand side of Eq. (1.103), and therefore

F�1fυ�f�g D 1

Taking the Fourier transform of both sides gives

Ff1g D
∫ 1

�1
e�j2�fx dx D υ�f� �1.105�

Next, the value of υ�bx� will be expressed in terms of υ�x�:

∫ ε

�ε
f�x�υ�bx� dx D 1

b

∫ bε

�bε
f
(y
b

)
υ�y� dy �1.106�

Thus, Eq. (1.106) becomes ∫ ε

�ε
f�x�υ�bx� dx D 1

b
f�0� �1.107�

Equation (1.102) with a D 0 gives∫ ε

�ε
f�x�υ�x� dx D f�0� �1.108�

A comparison of Eqs. (1.107) and (1.108) leads to

υ�bx� D υ�x�

jbj �1.109�

The absolute value is placed in the denominator of Eq. (1.109) because the result is
the same for �b and Cb. Another property of the delta function is that its convolution
with a function is the function itself; namely,

f�x� Ł υ�x � a� D f�x � a� �1.110�



30 FOURIER OPTICS: CONCEPTS AND APPLICATIONS

because ∫ 1

�1
f�$�υ�x � $ � a� d$ D f�x � a� �1.111�

1.4.6 Shah Function (Impulse Train Function)

An array of equally spaced delta functions, such as shown in Fig. 1.13a, is called the
shah function (or comb function), and it is denoted by �x�. Mathematically, the shah
function is represented as

�x� D
1∑

nD�1
υ�x � n� �1.112�

Two major applications of �x� are the following:

1. The generation of a sampled function. The sampled function gs�x� is an array
of delta functions whose envelope is proportional to g�x), such as shown in

−3 −2 −1 0

(a)

(b)

g(x+1) g(x)

d(x)d(x+1)d(x+2) d(x−1) d(x−2)

1 2 3 4

0 1−1 2 0

g(x)

(c)

−3 −2 −1 32

g(x)

gs(x)

10

g(x −1)

=∗
(x) R(x)=g(x)∗ (x)

x

x

x

Figure 1.13 Shah function and its applications. (a) Shah function �x�. (b) g�x� sampled by �x�.
(c) Step and repeat function R�x�.
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Fig. 1.13b. The sampled function can be generated by simply multiplying g�x)
by the shah function:

gs�x� D g�x� �x� �1.113�

A typical use for gs�x� is in optical signal processing, as, for example, processing
a newspaper photograph that is made of closely sampled points.

2. The generation of a step and repeat function. The step and repeat function, such
as that shown in Fig. 1.13c, can be generated by convolving g�x� with the shah
function:

R�x� D g�x� Ł �x� �1.114�

From the definition of convolution, R�x� is

R�x� D
∫ 1

�1
g�6� �x � 6� d6

D
∫ 1

�1
g�6�

1∑
nD�1

υ�x � 6 � n� d6 �1.115�

Using Eq. (1.102), Eq. (1.115) becomes

R�x� D
1∑

nD�1
g�x � n� �1.116�

which steps and repeats g�x� at a unit interval.

The shah function that steps and repeats at an interval other than the unit interval
warrants special attention. The step and repeat function at an interval of a is
expressed as

g�x� Ł
(x

a

)
D
∫ 1

�1
g�6�

1∑
�1

υ

(
x � 6 � an

a

)
d6 �1.117�

From Eq. (1.109), Eq. (1.117) becomes

g�x� Ł
( x

a

)
D a

1∑
nD�1

g�x � an� �1.118�

Thus, the step and repeat function at an interval of a is

R�x� D 1

a
g�x� Ł

(x

a

)
�1.119�

The existence of the factor 1/a should be noted.
Next, the Fourier transform of the shah function will be derived. Because the shah

function is a periodic function, it can be expanded into a Fourier series with a period
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of unity as

�x� D
1∑

nD�1
ane

j2��n/T�x �1.120�

where

an D 1

T

∫ T/2

�T/2
υ�x�e�j2��n/T�x dx D 1

and where T is the period of the delta functions and is unity. Thus, Eq. (1.120) becomes

�x� D
1∑

nD�1
ej2�nx �1.121�

Whenever x is an integer, �x� becomes infinite, so that Eq. (1.121) constitutes an array
of delta functions spaced by unity. Equation (1.121) is an alternate expression for the
shah function. Thus, using Eqs. (1.35), (1.105), and (1.121), the Fourier transform of
the shah function becomes

Ff �x�g D
1∑

nD�1
υ�f � n� � �f� �1.122a�

Similarly,

Ff �x/a�g D a �af� �1.122b�

�x� is a very special function in that the Fourier transform is the same as the
function itself.

1.4.7 Diffraction from an Infinite Array of Similar Apertures
with Regular Spacing

Making use of the shah function, the diffraction pattern will be calculated for a
one-dimensional array of slits such as shown in Fig. 1.14a(1). The slits are identical
rectangle functions with width a, and the slits are equally spaced with period b, thereby
forming a step and repeat function. The transmittance of this step and repeat function
is expressed using Eqs. (1.75) and (1.119) as

E�x0, y0� D 1

b

(x0

a

)
Ł

(x0

b

)
�1.123�

The diffraction pattern is given by Eq. (1.34) as

E�xi, yi� D a sinc
(

a

�zi
xi

)
Ð
(

b

�zi
xi

)
υ

(
yi

�zi

)
�1.124�

where the quadratic phase factor will be suppressed in this section.
A photograph of the diffraction pattern is shown in Fig. 1.14b(1). The pattern

consists of an array of bright spikes with spacing �zi/b. For this particular array,
the ratio between the slit width a and the period b is b/a D 5. This means that the fifth
spike overlaps with the first null of sinc�afx� and the intensity of the fifth spike is faint.
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(1)

a b

(2)
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(1) (2)

(b)

Figure 1.14 Comparison of (1) an array of long slits and (2) an array of short slits. (a) Geometry of
the apertures. The dark portions are the openings. (b) Diffraction patterns.

Figure 1.14b(2) was included in order to demonstrate how the dimension in fy of
the diffraction pattern stretches as the height of the slits y0 is shortened, while keeping
other parameters unchanged.

Next, a two-dimensional array will be formed out of rectangular apertures with
dimensions a ð l, with period b in the x direction and m in the y direction, as shown
in Fig. 1.15a(2).

The aperture is represented by

E�x0, y0� D 1

bm

[

(x0

a

)
Ł

(x0

b

)] [

(y0

l

)
Ł

(y0

m

)]
�1.125�

The diffraction pattern is given by

E�xi, yi� D al

j�zi
sinc

(
a

�zi
xi

)
sinc

(
l

�zi
yi

) (
b

�zi
xi

) (
m

�zi
yi

)
�1.126�

The photograph of the diffraction pattern in Fig. 1.15b(2) shows a grid of bright spikes.
The spacing of the spikes is �zi/b in the xi direction and �zi/m in the yi direction.
Note that the brightness of the spikes is not uniform and the overall distribution of the
bright spikes is similar to that of the single rectanglar aperture shown in Fig. 1.15b(1).
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Figure 1.15 Comparison of rectangular apertures in various configurations: (1) single rectangular
aperture, (2) rectangular apertures in a grid pattern, (3) rectangular apertures with random position in
the vertical orientation, and (4) randomly arranged rectangular apertures. (a) Geometry. (b) Diffraction
patterns.
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Figure 1.16 Circular apertures in various configurations: (1) single circular aperture, (2) circular aper-
tures in a linear array, (3) circular apertures in a grid pattern, and (4) randomly arranged circular
apertures. (a) Geometry. (b) Diffraction patterns.
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1.4.8 Diffraction from an Infinite Array of Similar Apertures
with Irregular Spacing

In the configuration shown in Fig. 1.15a(3), the elements of the array are randomly
arranged, but without any rotation of the individual elements. For simplicity, consider a
one-dimensional array with random spacing. If each rectangular aperture is translated in
the x0 direction by a random distance bj from the origin, then the aperture distribution
is represented by

E�x0, y0� D
N�1∑
jD0



(
x0 � bj

a

)

(y0

l

)
�1.127�

Using the shift theorem of the Fourier transform

Ffg�x � a�g D e�j2�faG�f� �1.128�

and

I�xi, yi� D E�xi, yi� ð EŁ�xi, yi�

the intensity distribution of the diffraction pattern is

I�xi, yi� D E�xi, yi��1 C e�j2�b1fx C e�j2�b2fx C Ð Ð Ð�
ð EŁ�xi, yi��1 C ej2�b1fx C ej2�b2fx C Ð Ð Ð�

D jE�xi, yi�j2

N C 2

N�1∑
jD1

N�1∑
kD1

cos 2fx�bj � bk�


 �1.129�

where jE�xi, yi�j2 is the diffraction pattern of a single rectangular aperture.
Since bj and bk are random, the second term is a superposition of cosine functions

of a random period, which means that the resultant is zero and the diffraction pattern
becomes NjE�xi, yi�j2. The intensity distribution of the diffraction is the same as that of
the single rectangular aperture but with N times the intensity, as shown in Fig. 1.15b(3).

Finally, the rectangular apertures are randomized with respect to rotation as well
as translation. The diffraction photograph in Fig. 1.15b(4) looks like one that would
have been obtained by rotating the single rectangular aperture diffraction pattern in
Fig. 1.15b(1) about its center.

Figure 1.16a and 1.16b show what happens when the rectangular apertures in
Fig. 1.15a are replaced by circular apertures.

The diffraction pattern of the single circular aperture in Fig.1.16a(1) is shown in
Fig. 1.16b(1). When this circular aperture is arranged in a one-dimensional array, as
shown in Fig. 1.16a(2), the diffraction pattern is made up of an array of vertical lines
(shah function) as shown in Fig. 1.16b(2). The brightness of the lines is not uniform,
but the overall brightness distribution resembles the diffraction pattern of the single
circular aperture shown in Fig. 1.16a(1).

Next, the circular apertures are arranged in grid form with period b in both the x0

and y0 directions as indicated in Fig. 1.16a(3). A photograph of the diffraction pattern
is shown in Fig. 1.16b(3). The grid pattern of the diffraction looks like the pattern that
would be obtained by the product of the pattern of an array in the x0 direction and the
pattern of an array in the y0 direction.
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As in the case of the rectangular element apertures shown in Fig. 1.15b(2), the
overall pattern of the brightness of the spikes in Fig. 1.16b(3) has a similar distribution
to the diffraction pattern of a circular element aperture.

In Fig. 1.16a(4) the circular apertures are arranged in a random manner. As with
the rectangular aperture, the photograph of the diffraction pattern in Fig. 1.16b(4)
resembles that of a single circular aperture but with N times the intensity.

The speckle patterns are due to the finite number of element apertures and decrease
with an increase in the number of elements.

1.4.9 Diffraction from a Finite Array

So far the dimensions of the array have been assumed to be infinite. In this section, the
effect of the finiteness of the array will be explained. An example of a two-dimensional
finite size rectangular aperture array is shown in Fig. 1.17a. The element apertures have
a size of a ð l and are spaced b and m apart in the x0 and y0 directions, respectively.

c

n

m

l

a

b

(a)

1

Gives information
about unit cell

Gives information
about lattice dimension

(b)

1
a

b
1

c

1l

n1m 1

Figure 1.17 Diffraction from an array of finite size. (a) Two-dimensional array of windows with
external dimensions c ð n. (b) Diffraction pattern of (a).
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The extent of the array is limited to c ð n in the x0 and y0 directions. The expression
for the transmittance is

E�x0, y0� D 1

bm

[

(x0

a

)
Ł

(x0

b

)]

(x0

c

)
ð
[

(y0

l

)
Ł

(y0

m

)]

(y0

n

)
�1.130�

The step and repeat functions in the square brackets are truncated by the rectangle
functions �x0/c� and �y0/n�.

The Fourier transform of the transmittance pattern is obtained from Eqs. (1.76) and
(1.122b):

FfE0�x0, y0�g D acln[ sinc�afx� �bfx�] Ł sinc�cfx�

ð [ sinc�lfy� �mfy�] Ł sinc�nfy� �1.131�

The order of the dimensions in the transmittance pattern is

a < b < c

where a is the width of the window, b is the spacing between windows, and c is the
overall dimension. In the diffraction pattern in Fig. 1.17b, the order of the dimensions
is inverted and reversed; namely,

1

c
<

1

b
<

1

a
�1.132�

where 1/c is the size of an individual spike, 1/b is the spacing between spots, and
1/a is the overall size of the diffraction pattern. Thus, the external size of the array
controls the size of the individual spike in the diffraction pattern.

Figure 1.18 illustrates how the external shape of the array controls the shape of
the individual spikes in the diffraction pattern. In Fig. 1.18a, the element apertures are
circular, and the grids are bordered by four different boundaries — circular, rectangular,
rectangular tilted at 45°, and triangular. The corresponding diffraction patterns are
shown in Fig. 1.18b.

From Eq. (1.131), the pattern of an individual spike is proportional to [sinc�cfx�
sinc�nfy�]2. As the shape of the outer boundary is rotated, the shape of the individual
spike rotates as shown in Figs. 1.18b(2) and 1.18b(3).

Finally, Fig. 1.18b(4) demonstrates that when the outer boundary is an equilateral
triangle, the shape of each spike becomes the diffraction pattern of a single triangular
aperture.

For large c, Eq. (1.131) can be approximated as

FfE0�x0, y0�g D acln sinc�afx�[ �bfx� Ł sinc�cfx�]

ð sinc�lfy�[ �mfy� Ł sinc�nfy�] �1.133�

Now, Eq. (1.133) can be separated into two factors of different natures. The factors
outside the square brackets are determined solely by the shape of each cell and are
called the element pattern. The factors inside the square brackets are determined solely
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(3) (4)

(b)

(1) (2)

(1) (2)

(3) (4)

(a)

Figure 1.18 The effect of external border shapes on a grid of circular apertures: (1) circular
border, (2) rectangular border, (3) tilted rectangular border, and (4) triangular border. (a) Geometry.
(b) Diffraction patterns. Each inset is the diffraction pattern of a single aperture with the same shape
as the border.
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b

m

Figure 1.19 Two-dimensional crystal array.

by the spacing and overall dimensions of the lattice, are independent of the shape of
each cell, and are called the array pattern. The diffraction pattern is the product of
these two patterns. The array pattern, which is periodic, provides the lattice dimension.
The element pattern, which is the envelope, provides the shape of the cell.

�Pattern� D �Element pattern� ð �array pattern� �1.134�

The two-dimensional crystal pattern such as shown in Fig. 1.19 can be obtained
by simply replacing sinc�afx� sinc�lfy� by G�fx, fy� D Ffg�x0, y0�g. The amplitude
envelope function G�fx,fy� contains information about the structure of the unit cell. The
structure of the unit cell g�x0, y0� can be derived by taking the inverse Fourier transform
of the envelope function. This is precisely the principle of X-ray crystallography.

In X-ray crystallography the darkness of each spot of the diffraction pattern in an
X-ray photograph is measured by a microdensitometer to obtain the envelope of the
intensity distribution jG�fx, fy�j2 of the diffraction pattern. This method, however,
measures the intensity pattern, and not the amplitude pattern of G�fx,fy�. The inverse
Fourier transform of the intensity pattern gives

F �1jG�fx, fy�j2 D g�x0, y0� Ł g��x0,�y0�

which is called the Harker pattern. From the Harker pattern, g�x0, y0� is resolved using
additional information derived from the physical chemistry of the molecule.

1.5 THE CONVEX LENS AND ITS FUNCTIONS

Geometrical optics is most often applied to find the location and size of the image
formed by a lens. Geometrical optics, however, fails to provide information about
the wavelength and polarization dependences of the field distribution, and the image
resolution for a given lens size. On the other hand, Fourier optics describes the wave
nature of optics, corrects these failures, and hence will be explained here.



THE CONVEX LENS AND ITS FUNCTIONS 41

1.5.1 Phase Distribution After a Plano-Convex Lens

Figure 1.20 shows a thin plano-convex lens made by slicing a small section of a sphere
by the plane A–A0. The lens medium is glass and the surrounding medium is air. The
phase distribution across the tangent plane B–B0 will be calculated. Plane B–B0 is
parallel to plane A–A0. The incident light is a plane wave whose propagation direction
is normal to the plane A–A0. The incident wave is represented as an array of parallel
rays, as shown on the left side of Fig. 1.20. The ray passing through the fat lens center
suffers the longest phase delay, while that passing through the thin rim undergoes the
shortest phase delay. The exact distribution ��x, a� will be calculated in the coordinates
whose origin coincides with the center of the sphere. A light ray at an arbitrary height
x goes through both glass and air to reach plane B–B0 from plane A–A0. The total
phase delay ��x, a� is

��x, a� D k[n�
√

a2 � x2 � b� C a �
√

a2 � x2] �1.135�

where the y component is suppressed. With �x/a�2 − 1 and using the binomial
expansion, ��x, a� is approximated as

��x, a� D �0 � k
x2

2f0

where

�0 D kn�a � b� �1.136�

and

f0 D a

n � 1
�1.137�
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(  a2 −x 2−b)

a−  a2−x2

Figure 1.20 Geometry of a thin lens.
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Thus, the emergent field from the plane B–B0 is

E�x� D Ae�jkx2/2f0 �1.138�

The phase �0 is a constant that causes the same phase delay everywhere. It has no
physical significance and is suppressed. In the two-dimensional case of a spherical
lens, the emergent field E�x, y� is

E�x, y� D Ae�jk�x2Cy2�/2f0 �1.139�

where f0 is the focal length of the lens, as will be seen shortly. The lens generates a
quadratic phase distribution with a negative sign. This negative sign plays an important
role in the convex lens.

1.5.2 Collimating Property of a Convex Lens

The collimating property of a lens is one of the simplest Fourier optics examples and is
a good starting point for more detailed lens analysis. A delta function source is placed
at F in front of a convex lens at a distance f0 as shown in Fig. 1.21. The field incident
on the lens is

E�x, y� D 1

j�f0
ejk[f0C�x2Cy2�/2f0] �1.140�

Point
source

F

Aperture

Parallel beam

Convex
lens

f0

Cancel each other

ejkf0+jk
(x 2

0+y 2
0)

2f0 e−jk
x2

0+y 2
0

2f0

Figure 1.21 Interpretation of the generation of a parallel beam by Fourier optics.
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where the coordinates �x, y� are in the plane of the lens. When the field passes through
the lens it experiences a phase delay, which has previously been shown in Eq. (1.139)
to be � D �k[�x2 C y2�/2f0]. Hence, the resultant Fresnel diffraction of this field
at a distant z D zi plane is obtained from the Fresnel–Kirchhoff diffraction formula
(Eq. (1.38))

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

ð F

{
1

j�f0
ejk[f0C�x2Cy2�/2f0]

︸ ︷︷ ︸
Input

e�jk�x2Cy2�/2f0

︸ ︷︷ ︸
Lens

ejk�x2Cy2�/2zi

︸ ︷︷ ︸
Part of the

point spread
function

}
fxDxi/�zi,fyDyi/�zi

�1.141�

The divergence of the input field factor is partially cancelled by the lens factor. The
rearrangement of Eq. (1.141) results in

E�xi, yi� D 1

j�f0
ejkf0Cjk[�x2

i Cy2
i �/2zi]F

{
1

j�zi
ejk[ziC�x2Cy2�/2zi]

}
fxDxi/�zi,fyDyi/�zi

�1.142�

The quantity in the curly brackets is the point spread function and its Fourier transform
is obtained from Eq. (1.41):

E�xi, yi� D 1

j�f0
ejk�f0Czi�Cjk[�x2

i Cy2
i �/2zi][e�j��zi�f2

x Cf2
y �]fxDxi/�zi,fyDyi/�zi �1.143�

Due to cancellation we finally obtain a function independent of xi and yi:

E�xi, yi� D 1

j�f0
ejk�f0Czi� �1.144�

Hence, the field is a parallel beam and is a plane wave with constant amplitude 1/�f0.
The amplitude stays constant with distance zi as shown in Fig. 1.21. This proves that
f0 is indeed the focal length of the lens.

1.5.3 Imaging Property of a Convex Lens

The Gaussian lens formula is derived by geometrical optics as

1

d1
C 1

d2
D 1

f0
�1.145�

where f0 is the focal length of the convex lens, d1 is the distance from the lens to the
object, and d2 is the distance from the lens to the image. The Gaussian lens formula
will be obtained using Fourier optics. The imaging condition is that the light emanating
from a point on the object converges back to a point in the image plane.
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Figure 1.22 Imaging condition of a convex lens.

For simplicity, the object is a delta function source S located on the z axis, as shown
in Fig. 1.22. The input field El�x, y� to the lens in x, y coordinates is

El�x, y� D 1

j�d1
ejk[d1C�x2Cy2�/2d1] �1.146�

The Fresnel diffraction from the lens to the image plane at zi D d2 is, from Eq. (1.38),

E�xi, yi� D �ejk[d2C�x2
i Cy2

i �/2d2]

�2d1d2

F

{
ejk[d1C�x2Cy2�/2d1]︸ ︷︷ ︸

Input

e�jk�x2Cy2�/2f0︸ ︷︷ ︸
Lens

ejk�x2Cy2�/2d2︸ ︷︷ ︸
Part of the

point spread
function

}
fxDxi/�d2,fyDyi/�d2

�1.147�

If the observation is made at the particular value of d2 that satisfies the Gaussian lens
formula, Eq. (1.145), then the value inside the curly brackets becomes unity and

E�xi, yi� D � 1

�2d1d2
ejk[d1Cd2C�x2

i Cy2
i �/2d2]υ

(
xi

�d2

)
υ

(
yi

�d2

)
�1.148�

The delta function image P is recovered if the imaging condition is satisfied. Thus,
Fourier optics has proved Eq. (1.145).
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E�xi, yi� will be rewritten in a form more conducive to extracting the physical
meaning. Using Eq. (1.109), the last two factors of Eq. (1.148) can be rewritten as

υ

(
xi

�d2

)
υ

(
yi

�d2

)
D ��d1�

2υ

(
d1

d2
xi

)
υ

(
d1

d2
yi

)
�1.149�

Let m be the magnification factor:

m D d2

d1
�1.150�

The expression for the image finally becomes

E�xi, yi� D � 1

m
ejk[d1Cd2C�x2

i Cy2
i �/2d2]υ

(xi

m

)
υ
(yi

m

)
�1.151�

Since the object is a delta function source υ�x0�υ�y0�, its image is also expected to be
a delta function and is υ�xi/m�υ�yi/m�. The width of υ�xi/m� is wider than υ�x0� by
m times, and hence the image is magnified by m times. As far as the light intensity is
concerned, the amplitude of the light is diluted by 1/m times.

The advantage of the Fourier optics approach is that it can be applied to situations
where geometric optics is inadequate, such as dealing with the finite size of the
lens. For example, the case of the finite-sized square aperture of dimensions a ð a
is represented as

A�x, y� D 
(x

a

)

(y
a

)
�1.152�

This has the effect of altering the input by this factor. With this insertion into
Eq. (1.146), the finite lens equivalent of Eq. (1.148) is

E�xi, yi� D � 1

�2d1d2
ejk[d1Cd2C�x2

i Cy2
i �/2d2]

ð [a2 sinc�afx� sinc�afy�︸ ︷︷ ︸
Due to a finite
square aperture

Ł υ�fx�υ�fy�︸ ︷︷ ︸
Image

]fxDxi/�d2,fyDyi/�d2 �1.153�

The final result is

E�xi, yi� D 1

�2d1d2
ejk[d1Cd2C�x2

i Cy2
i �/2d2]a2 sinc

(
a

xi

�d2

)
sinc

(
a

yi

�d2

)
�1.154�

Thus, the image of the delta function object is no longer a delta function but a sinc
function whose main lobe size is �2�d2/a� ð �2�d2/a�. The larger the aperture a ð a
is, the smaller the width of the lobe becomes. However, as long as the dimension of
the aperture is finite, the lobe is also finite. Hence, the image cannot be the same as
the original delta function, even when the lens is designed perfectly and is aberration
free. If the only limitation on resolution is due to the finiteness of the aperture causing
the diffraction, then the imaging system is said to be diffraction limited.
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1.5.4 Fourier Transformable Property of a Convex Lens

Besides the properties of converging, diverging, collimating, and forming images, the
convex lens also has a Fourier transformable property [1,6,8]. It takes place at the back
focal plane of the lens. For instance, when a parallel beam (constant with respect to x0

and y0) is incident onto a convex lens, the distribution of light that results on the focal
plane behind the lens is a point or delta function. The delta function is the Fourier
transform of a constant. In this way, the convex lens can be considered to possess a
Fourier transformable property.

Now consider a source (an input function or input mask) placed on the back surface
of a convex lens, as shown in Fig. 1.23. The screen is located in the near field and
hence Fresnel’s near-field diffraction equation, Eq. (1.38), is used. The field on the
screen is the Fourier transform of the field just behind the lens multiplied by the point
spread function.

E�xi, yi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

FfE�x0, y0�e
�jk�x2

0Cy2
0�/2f0 Ð ejk�x2

0Cy2
0�/2zigfxDxi/�zi, fyDyi/�zi �1.155�

If the observation is made at a distance zi D f0, the point spread phase factor
is cancelled by the quadratic phase factor of the convex lens and Eq. (1.155)

f0

y0

x0
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yi

z

Fourier
transform
on the back
focal plane

Back focal
plane

Input image in contact
with a convex lens

Input mask

Parallel
incident
beam

Plano-convex
lens

Figure 1.23 Fourier transform when the input image is pressed against a plano-convex lens.
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becomes

E�xi, yi� D 1

j�f0
ejk[f0C�x2

i Cy2
i �/2f0]ε

(
xi

�f0
,

yi

�f0

)
�1.156�

where

ε�fx, fy� D FfE�x0, y0�g

Thus, the output E�xi, yi� is the Fourier transform of the input function. It should be
noted, however, that the output is not exactly the Fourier transform but is altered by
a quadratic phase factor exp[jk�x2

i C y2
i �/2f0]. Furthermore, the size of the Fourier

transform pattern ε�xi/�f0, yi/�f0� depends on the focal length of the lens.
Next, a different problem is investigated. Consider the case when the input function

is placed at the focal plane in front of the lens, as arranged in Fig. 1.24. The field
incident upon the lens is in the near field. Hence, the Fresnel diffraction pattern of the
input function, in the form of convolution with the point spread function as given by
Eq. (1.39), is used.

El�x, y� D E0�x, y� Ł ff0�x, y� �1.157�

Using the previous discovery that the field in the back focal plane of a convex lens
is merely the Fourier transform of the input function (Eq. (1.156)), the distribution on
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E(x0,y0)
Input

E(xi,yi)
Output
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yi

xi

xi

yi

zi

0

Figure 1.24 Fourier transform by a convex lens when the input is at the front focal plane F1 and the
Fourier transform is on the back focal plane F2.
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the screen in the back focal plane is given by

E�xi, yi� D 1

j�f0
ejk[f0C�x2

i Cy2
i �/2f0]FfE0�x, y� Ł ff0�x, y�gfxDxi/�f0, fyDyi/�f0 �1.158�

Using the product rule of Fourier transforms and the Fourier transform of the point
spread function from Eq. (1.41), the field is equal to

E�xi, yi� D 1

j�f0
ejk[f0C�x2

i Cy2
i �/2f0][ε�fx, fy� Ð ejkf0�j��f0�f2

x Cf2
y �]fxDxi/�f0, fyDyi/�f0

�1.159�

E�xi, yi� D ej2kf0

j�f0
ε

(
xi

�f0
,

yi

�f0

)
�1.160�

This final result can be compared to the previous findings for the lens system of
Fig. 1.23. This formula is very similar except for the absence of the quadratic phase
factor.

Thus, the Fourier transform without the quadratic phase factor is obtained when the
input is placed in the front focal plane and observed on the back focal plane.

Lastly, consider what happens when the input is placed in an arbitrary converging
beam, as shown in Fig. 1.25. In this case, the Fourier transform is obtained in a plane
containing the point of convergence. It does not matter whether the converging beam
has been made by a single lens or a composite of lenses, as long as a converging
spherical wave is the incident input beam.

Before going into detail, the difference in the expressions for diverging and
converging rays needs to be understood. Figure 1.26 shows how two phase fronts
evolve as time elapses from t D 1 to t D 3. Both beams are propagating in the positive
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(xi,yi) e(xi,yi)

F1
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converging
beam

An array of 
lenses or a
single lens

Expand the Fourier
transform image

Shrink the Fourier
transform image
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Figure 1.25 Fourier transform by a converging beam.
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Figure 1.26 Diverging and converging spherical waves.

z direction and have a quadratic phase distribution in the transverse �xi, yi� plane.
However, the signs of the phase are opposite. The difference in signs can be explained
as follows. In Fig. 1.26a, if the phase is observed outward from the origin (increasing
x2

0 C y2
0), the later or the more delayed phase is observed. Therefore, the factor is

positive and is expressed as

E�x0, y0� D E0 ejk�x2
0Cy2

0�/2r0 �1.161�

where r0 is the distance between the point source and the screen.
On the other hand, for the converging beam in Fig. 1.26b, the earlier or more leading

phase is observed as the point of observation moves away from the center of the lens;
thus, the phase factor has to be

E�x0, y0� D E0 e�jk�x2
0Cy2

0�/2r0 �1.162�

Now, let us return to the diffraction pattern of the input and consider the case
when the input is inserted into a converging beam. From the Fresnel diffraction
formula of Eq. (1.38) and the phase factor, the field observed at a distance r0 from the
input is

E�xi, yi� D 1

j�zi
ejk[r0C�x2

i Cy2
i �/2r0]

Ffe�jk�x2
0Cy2

0�/2r0E�x0, y0�e
jk�x2

0Cy2
0�/2r0gfxDxi/�r0, fyDyi/�r0 �1.163�
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The phase of the converging beam and the point spread function cancel each other,
and the final expression becomes

E�xi, yi� D ejk[r0C�x2
i Cy2

i �/2r0]

j�r0
ε

(
xi

�r0
,

yi

�r0

)
�1.164�

The Fourier transform is obtained, but with the inclusion of the quadratic phase factor
once again. This time, however, the size of the Fourier transform diffraction pattern
can be controlled without changing the focal length of the lens. The size of the image
is enlarged as r0 is increased, until the input is obstructed by the lens.

1.5.5 How Can a Convex Lens Perform the Fourier Transform?

Figure 1.27 gives a pictorial explanation of how a convex lens performs the Fourier
transform of the input image. The input is placed in the front focal plane of the convex
lens, and the output is observed in the back focal plane. The observation point P�xi�
will always be at xi D xi in the back focal plane.

In case (1), a delta function source is placed at the origin of the input plane. The
emergent light from the lens is a parallel beam. The phase at P�xi� is the same as that
at the origin. In case (2), the light source is moved to x0 D x1. The parallel beam will
be tilted and propagates slightly downward. The phase at P�xi� is leading that at the
origin by �jk�sin �i�xi radians or approximately �j�2�/���x1/f0�xi radians. The field
at P�xi� is

E�xi� D E1 exp
(

�j
2�

�

xi

f0
x1

)

In case (3), one more source is added at x0 D x2, and the sum of the contributions of
the two sources is

E�xi� D E1 exp
(

�j
2�

�

xi

f0
x1

)
C E2 exp

(
�j

2�

�

xi

f0
x2

)

In case (4), a distributed source E�x0� is placed in the input plane. The contribution of
the distributed source is expressed by an integral over the source plane.

E�xi� D
∫

E�x0� exp
(

�j
2�

�

xi

f0
x0

)
dx0

Thus, the lens performs the Fourier transform of the input image and the output is

E�xi� D F fE�x0�gfxDxi/�f0

1.5.6 Invariance of the Location of the Input Pattern to the
Fourier Transform

Even when the input pattern is moved sideways, the location of the Fourier transform
pattern stays in close proximity to the back focal point of the lens. Figure 1.28 shows
how the ray paths change as the input object (letter envelope) is moved vertically
in the x–y plane and horizontally along the z axis. From the figure, we see that the
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Figure 1.27 How a convex lens performs the Fourier transform.
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Figure 1.28 Demonstrating that the Fourier transform is confined to the vicinity of the back focal
point F regardless of the location of the input image.

incident parallel beam converges to the back focal point and the diffraction pattern
of the input remains around the focal point regardless of the location of the input.
When the envelope is lowered, the scattered beam starts from a lower location but the
scattered field first converges to the center of the back focal plane and then forms an
image at a higher location. In fact, the Fourier transform pattern is usually confined
within a small range. For instance, with � D 0.63 µm, the focal length f D 10 cm,
and with a maximum spatial frequency of fx D 100 lines/mm, the Fourier transform
appears within xi D šfx�f D š6.3 mm at the back focal point. This is one of the
most useful features of the Fourier transform nature of a lens. In practical applications,
such as mass processing of addresses on letters, this means that stringent positioning
requirements of the input image are not necessary.

The reason for this phenomenon mathematically is that the Fourier transform of
the shifted input g�x � a� is e�j2�faG�f�. The shift causes the phase shift e�j2�fa.
However, the human eye cannot recognize phase shifts and thus the pattern does
not show any change when the input is shifted. However, this is only true with a
translational shift and not true with a rotational shift.

1.6 SPATIAL FREQUENCY APPROACHES IN FOURIER OPTICS

Another way of calculating the diffraction pattern will be introduced. The given
input pattern is first decomposed into its constituent spatial frequencies by Fourier
transforming the input, and then the propagated field of each spatial frequency
component is calculated. The desired diffraction pattern of the given input pattern
is the sum of the propagated patterns of the spatial frequency components [1, 11].

1.6.1 Solution of the Wave Equation by Means of the Fourier Transform

With the geometry shown in Fig. 1.2, the field E�xi, yi, z, t� at z D zi will be calculated
from the spectrum of the input field at z D 0. Assuming a sinusoidal time dependence,
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the field is expressed as

E�x, y, z, t� D E�x, y, z�e�jωt �1.165�

Equation (1.165) has to satisfy the wave equation

r2E C k2E D 0 �1.166�

If Cartesian coordinates are used to express Eq (1.166), the general solutions for
Ex, Ey , and Ez are all identical. What makes Ex, Ey , and Ez different is that the
boundary conditions depend on the components. Let the solution of Eq. (1.166) be
denoted as E�x, y, z�. This approach is called the scalar wave approach. The scalar
wave approach is much simpler than the vector wave approach but is less accurate
because it assumes that the same boundary conditions are applicable to both normal
and tangential components. Accepting this trade of simplicity for accuracy, the scalar
equivalent of Eq. (1.165) is

E�x, y, z, t� D E�x, y, z�e�jωt �1.167�

Thus, the scalar wave equation becomes

∂2E

∂x2
C ∂2E

∂y2
C ∂2E

∂z2
C k2E D 0 �1.168�

Now, the wave equation (1.168) can be solved using the Fourier transform method [11].
The Fourier transform of E with respect to x in the fx, fy domain is

FxfEg D ε�fx, y, z� �1.169�

The derivative rule of the Fourier transform is

F
{

∂E

∂x

}
D j2�fxε�fx, y, z� �1.170�

The Fourier transform of Eq. (1.168) with respect to x gives

�j2�fx�
2ε�fx, y, z� C ∂2

∂y2
ε�fx, y, z� C ∂2

∂z2
ε�fx, y, z� C k2ε�fx, y, z� D 0 �1.171�

Similarly, the Fourier transform of the above equation with respect to y gives

�j2�fx�
2ε�fx,fy, z� C �j2�fy�

2ε�fx, fy, z� C ∂2

∂z2
ε�fx,fy, z� C k2ε�fx, fy, z� D 0

�1.172�

Hence, the Fourier transform of the scalar wave equation, Eq. (1.168), with respect to
both x and y is [

∂2

∂z2
C �2�fz�

2
]
ε�fx,fy, z� D 0 �1.173�
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where

fz D
√

f2
s � f2

x � f2
y �1.174�

fs is the spatial frequency in the direction of propagation and fs D 1/� as defined by
Eq. (1.20). Equation (1.173) is a second order partial differential equation with respect
to z whose solution is

ε�fx, fy, z� D Aej2�fzz C Be�j2�fzz �1.175�

The first term is a forward wave while the second term is a backward wave. The values
of A and B are to be found from the boundary conditions of either ε or its derivative.
We will restrict ourselves to the simple case where only the forward wave is present,
and B D 0. By setting z D 0 in Eq. (1.175), A is found to be ε�fx, fy, 0�. The solution
becomes

ε�fx, fy, z� D ε�fx,fy, 0�ej2�fzz �1.176�

Finally, we solve for the field E�xi, yi, zi� by taking the inverse Fourier transform of
Eq. (1.176). This gives

E�xi, yi, zi� D
∫∫

1
ε�fx, fy, 0�ej2�

p
f2
s �f2

x �f2
y Ðziej2�fxxiCj2�fyyidfxdfy �1.177�

where

ε�fx,fy, 0� D
∫∫

1
E�x0, y0, 0�e�j2�fxx0�j2�fyy0dx0 dy0 �1.178�

The combination of these equations is called the Rayleigh–Sommerfeld diffraction
formula and provides the field at z D zi from the Fourier transform of the input field
at z D 0.

Even though Eqs. (1.177) and (1.178) are simple expressions, it is difficult to obtain
a highly accurate representation of E�x0, y0, 0� that expresses the field for an aperture of
finite size. For example, the field of an aperture illuminated from the back by a plane
wave is almost, but not exactly, uniform across the aperture. The aperture contains
contributions from the waves scattered by the edges, as well as multiple scatterings
between the facing edges. As a result, it is quite difficult to obtain the exact expression
of the input field.

Example 1.6 Demonstrate that the Rayleigh–Sommerfeld and Fresnel–Kirchhoff
diffraction formulas provide the same answer using the example of the diffraction
pattern of a pinhole. The pinhole is located at the origin of the input plane and is
illuminated by a plane wave of unit amplitude from behind as shown in Fig. 1.29a.

Solution
1. Solution by the Rayleigh–Sommerfeld formula.

In this method, the Fourier transform ε of the input field is first obtained and
then ε is allowed to propagate to the output screen where the inverse Fourier
transform is performed to obtain the final result.
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Figure 1.29 Field from a pinhole in space and spatial frequency domains. (a) Space domain.
(b) Spatial frequency domain.

The pinhole is represented by

E�x0, y0� D υ�x0�υ�y0� �1.179�

Inserting Eq. (1.179) into (1.178) gives

ε�fx, fy, 0� D 1 �1.180�

Since there is no backward wave in the region between the input and output
planes, B D 0 in Eq. (1.175). Let ε�fx, fy, 0� propagate to the output screen
using Eq. (1.176):

ε�fx, fy, zi� D ej2�fzzi �1.181�

If we apply the para-axial approximation, which means that the propagation
directions of the component waves are almost along the z axis, then fs satisfies

f2
s × f2

x C f2
y �1.182�
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Recalling that

fs D 1

�

the binomial expansion of Eq. (1.174) becomes

fz D 1

�
� �

2
�f2

x C f2
y � �1.183�

Inserting Eq. (1.183) into (1.181) gives

ε�fx, fy, 0�ej2�fzzi D ejkz�j��zi�f2
x Cf2

z � �1.184�

Using the Fourier transform relationship of Eq. (1.44), Eq. (1.184) is inverse
Fourier transformed to obtain the final result as

E�xi, yi, zi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi] �1.185�

2. Solution by the Fresnel–Kirchhoff integral.
Inserting Eq. (1.179) into (1.38) gives

E�xi, yi, zi� D 1

j�zi
ejk[ziC�x2

i Cy2
i �/2zi]

∫∫ 1

�1
υ�x0�υ�y0�

ð ejk�x2
0Cy2

0�/2zi Ð e�j2��fxx0Cfyy0�dx0 dy0 �1.186�

The integral in Eq. (1.186) is unity and Eq. (1.186) is the same as Eq. (1.185).
�

Example 1.7 As shown in Fig. 1.30, light is incident from an optically dense medium
with refractive index n into free space. The interface between the medium and free
space is in the plane of z D 0. The propagation direction of the incident wave is in the
x–z plane and the incident angle to the interface is �i. Find the field at point �xi, yi, zi�
in free space and its propagation direction.

Solution The wavelength �x0 in the x0 direction at the interface is

�x0 D �

n sin �i
�1.187�

The corresponding spatial frequency from Eq. (1.13) is

fx0 D nfs sin �i �1.188�

Note that B in Eq. (1.175) is zero because there is no wave propagating in the negative
z direction in the free-space region. Thus, the field E�x0, y0, 0� in the z D 0 plane is

E�x0, y0, 0� D E0e
j2�nfsx0 sin �i �1.189�
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Figure 1.30 Transmission from an optically dense medium into a less dense medium is calculated.

From Eq. (1.189), Eq. (1.178) becomes

ε�fx,fy, 0� D E0υ�fx � nfs sin �i�υ�fy� �1.190�

Thus, the input field contains only one spatial frequency component, nfs sin �i. Next,
Eq. (1.177) will be calculated:

E�xi, yi, zi� D
∫∫

E0υ�fx � nfs sin �i�υ�fy�e
j2�

p
f2
s �f2

x �f2
y zi ej2��fxxiCfyyi� dfx dfy

�1.191�

Applying Eq. (1.102) to (1.191) gives

E�xi, yi, zi� D E0 exp[j2�
√

f2
s � n2f2

s sin2 �i zi C j2�nfs�sin �i�xi] �1.192�
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From Snell’s law at the boundary,

n sin �i D sin �t �1.193�

the final result is

E�xi, yi, zi� D E0 exp[j2�fs�cos �t�zi C j2�fs�sin �t�xi] �1.194�

Equation (1.194) is a plane wave whose propagation unit vector is

Oe D sin �tOı C cos �t Ok �1.195�

The propagation direction with respect to the normal of the input plane is

tan�1 ex

ez
D �t �1.196�

Next, the case of the evanescent wave will be explained. Equation (1.192) can be
rewritten as

E�xi, yi, zi� D E0 exp[�2�fs

√
n2 sin2 �i � 1 zi C j2�nfs�sin �i�xi] �1.197�

When either �i or n is large and the condition n sin �i > 1 is satisfied, the amplitude
of the wave decays exponentially in the z direction. This is an example of an
evanescent wave. For the evanescent wave, the phase varies in the xi direction whereas
the amplitude of the wave does not, as shown by Eq. (1.197) and Fig. 1.30b. The
evanescent wave is a very important subject and will be treated in more detail in the
next chapter. �

1.6.2 Rayleigh–Sommerfeld Integral

This section is devoted to explaining the conceptual differences between the
Rayleigh–Sommerfeld and the Fresnel–Kirchhoff diffraction formulas. Mathemati-
cally, the two integrals are equivalent, and Appendix A of Volume I presents a general
proof of this. Conceptually, there are differences between the two approaches. Under-
standing these differences is important so that the most appropriate choice is made in
solving a given problem.

The Fresnel–Kirchhoff diffraction formula, Eq. (1.28), is repeated here for conve-
nience.

E�xi, yi, zi� D 1

j�

∫∫
ej2�fsr

r︸ ︷︷ ︸
Spherical

wave

E�x0, y0� dx0 dy0︸ ︷︷ ︸
Amplitude of the
spherical wave

with r D
√

�xi � x0�2 C �yi � y0�2 C z2
i

�1.198�

As mentioned in Section 1.2, ej2�fsr/r represents a spherical wave emanating from
the point �x0, y0� with E�x0, y0� dx0 dy0 as its amplitude. The representation of
the source function as a collection of spherical wave point sources is indicated
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by S1, S2, S3, . . . , Sn in Fig. 1.31a. In order to find the field observed at P, the
contributions of all spherical wave sources S1, S2, S3, . . . , Sn are integrated over the
entire shape of the source.

Next, let us examine the Rayleigh–Sommerfeld diffraction formula. Equation
(1.177) is rewritten below:

E�xi, yi, zi� D
∫∫

ej2x�fxxCj2�fyyCj2�fzz︸ ︷︷ ︸
Plane wave propagating

in the �fx i, fy j, fzk�
direction

ε�fx,fy, 0� dfx dfy︸ ︷︷ ︸
Amplitude

with fz D
√

f2
s � f2

x � f2
y

�1.199�

The first factor of the integral in Eq. (1.199) is a plane wave component propagating
in the direction

�fxi, fyj, fzk� �1.200�

The second factor is the amplitude of the plane wave. The integral with respect to
fx and fy means the integration of the plane wave contributions from all propagating
directions. Since fs D 1/� is given, once fx and fy are specified, the value of fz is
accordingly set from the lower equation of Eq. (1.199). There are few noteworthy
points with regard to this integral. As shown in Fig. 1.31b, the integral includes not
only the plane wave B whose wave normal is aimed at P but also all other wave
normals denoted by A, C, . . .. However, a wave normal is not the same thing as a
light beam. Any line drawn parallel to the propagation direction of a given wave can
be the wave normal of that same wave. For example, the wave represented by B0 in
Fig. 1.31b is identical with the wave represented by B.

It is also important to include the contributions of plane waves propagating in the
negative x0 direction, such as shown by A in Fig. 1.31b.
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Figure 1.31 Conceptual comparison of the diffraction formulas. (a) Fresnel–Kirchhoff. (b) Rayleigh–
Sommerfeld.
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According to Eq. (1.199), another significant point to remember is that fz becomes
an imaginary number for

f2
x C f2

y > f2
s �1.201�

When fz is an imaginary number, the integrand becomes an evanescent wave whose
magnitude decays exponentially with z. The contribution of the evanescent wave is
insignificant unless the point of observation is close to the source and z is small.

1.6.3 Identifying the Spatial Frequency Components

The spatial frequency components shown in Fig. 1.31b can be identified by using a
convex lens as illustrated in Fig. 1.32. Only two spatial frequency components are
considered. Both of them are incident from the left of the convex lens. Because both
waves are plane waves, they are focused on the back focal plane. The component with
fx D fy D 0 is incident normal to the lens and is focused at �0, 0, f�, where f is the
focal length of the convex lens. The component with fx 6D 0, fy D 0 is incident to the
lens with an incident angle

� D tan�1�fx/fz� �1.202�

and is focused on the back focal plane at �xi, 0, f�, where

xi D f tan � � f�fx �1.203�

and where the approximation of fz D fs was made. The location of the focused light
rises along the xi axis as fx is increased. The higher the location, the higher the spatial
frequency of the converging light. This means that by placing a mask of a predetermined

xi = f l fxwith fx ≠ 0 
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Figure 1.32 Identifying the spatial frequency components by means of a convex lens.
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transmittance distribution in the back focal plane of the convex lens, the waves of a
particular spatial frequency component can be either selectively transmitted through
or blocked by this mask. The following sections elaborate on this technique. (See
Section 1.2 for the case without a lens.)

1.7 SPATIAL FILTERS

This section is devoted to a discussion of optical signal processing based on
manipulation of spatial frequency components.

1.7.1 Image Processing Filters

Figure 1.33 shows different arrangements for image processing using various types of
spatial frequency filters [1,8]. For all the cases, there is a point source that is collimated

L1

L1

S

S

P1 P2L2 L3

L1 P1 P2

G0

L2 L3
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P1 L2 P2 L3

Source
f1 f2 f3f2 f3
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(a)

(b)

(c)

Lens Lens ScreenPinhole
filter

High
pass filter

Ultrasound
in water

Opaque dot or
phase plate shifter

Figure 1.33 Various types of spatial filters. (a) Low-pass filter. (b) High-pass filter. (c) Schlieren
camera. (d) Spatial derivative operation. (e) Step and repeat operation.
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Figure 1.33 (Continued)

by lens L1. The collimated beam illuminates a transparency overlay forming the input
image. Lens L2 Fourier transforms the transparency pattern in its back focal plane.
The spatial filter is placed in the back focal plane of L2 and modifies the pattern. The
modified pattern is Fourier transformed again by means of lens L3, and the processed
image is finally projected onto the screen.

Figure 1.33a shows a low-pass spatial filter. In the plane of the spatial filter, the
spatial frequency is zero on the z axis and increases linearly with distance from the
axis. The higher frequency components, which are diffracted to the area away from
the axis, are blocked by the mask. A typical low-pass filter consists of a pinhole and
a lens combination, commonly marketed as a “spatial filter.”Ł This filter filters out all
the spatial frequency components except the zero spatial frequency, resulting in a pure
parallel beam.

Ł Keep in mind that the true meaning of a spatial filter is broader in scope than the marketplace meaning
of spatial filter.
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Figure 1.33b shows an example of image processing with a high-pass spatial filter.
Here, the lower spatial frequency components are suppressed. In general, sharp edges
and fine lines in the image generate higher spatial frequency components, which are
then accentuated in the image. Thus, fine point or edge enhancement is achieved by
this type of filter.

Figure 1.33c shows an example of a Schlieren camera. This filter is used to view
transparent objects. It is normally difficult to view or photograph objects that are
transparent although they may have varying indices of refraction within them. Examples
include such objects as microbes, turbulent air, or ultrasound patterns in a liquid. The
difficulty is that the images of these objects have only phase variations, which neither
our eyes nor an ordinary camera can detect.

The Schlieren camera, however, creates an interference pattern between the image
and a constant phase reference wave. The constant phase reference wave is generated
by placing an opaque dot at the back focal point of lens L2 on P2. The generation of
the reference wave is explained as follows. The zero spatial frequency is blocked by
the opaque dot. Blocking the zero spatial frequency component means there is zero
field at the location of the opaque dot, and a zero field is equivalent to the sum of two
waves of equal amplitude and opposite phase. Thus, the field at the location of the
opaque dot can be expressed as the sum of the original zero spatial frequency wave,
and a wave of equal amplitude but opposite phase (reference wave). This reference
wave can be thought of as a fictitious point source located at the front focal point of
lens L3 and projecting a constant phase reference field onto the screen, while the input
wave is Fourier transformed by L3, forming an inverted image on the same screen.
The superposition of image and reference waves on the screen creates an interference
pattern. The contours of the constructive interference are the brightest and those of the
destructive intereference are the darkest. The phase variation of the object is converted
into an intensity variation by the Schlieren camera.

A quarter-wave phase plate can also be used instead of an opaque dot
(Problem 1.10). The effects of a Schlieren camera can also be replicated by placing a
knife edge to block the entire lower half domain of the Fourier transform.

Figure 1.34 shows a photograph of a fetal mouse taken by a Schlieren camera.
Practically no image is formed if an ordinary microscope is used.

Figure 1.34 Schlieren photograph of a fetal mouse. (Courtesy of Olympus Optical Co., Ltd.)
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Figure 1.33d shows an example of the spatial derivative operation. The Fourier
transform of the derivative is

Ffg0�x0�g D j2�fx Ð Ffgg �1.204�

The filter placed at the back focal plane of the Fourier transform lens L2 has
transmittance characteristics of 6�fx� D fx in the spatial frequency domain. The filter,
however, has to have this characteristic from fx D �1 to fx D 1 in order for
6�fx� D fx to be realized. The positive fx region can easily be realized, but the negative
fx region is much more difficult to realize. The phase of the negative fx region can
be reversed by a thin layer of a substance with a higher refractive index. This layer
causes a �-radian phase delay. After another Fourier transform through lens L3, the
image of g0�x0� is obtained on the screen. One of the practical applications of such an
operation is in edge enhancement or outlining the input image for easy identification
of the shape of the object.

Figure 1.33e shows how to generate the repeated image of the input. A mask of a
grid of pinholes with periods a and b in the x and y directions is placed in the back
focal plane of lens L2. The transmittance of such a mask is

1

ab

(x

a

) (y
b

)
�1.205�

Thus, the field distribution after passing through the pinhole mask would be

1

ab

ejkf

j�f
G

(
x

�f
,

y

�f

) (x

a

) (y
b

)
�1.206�

where G�fx, fy� is the Fourier transform of the input g�x, y� function. The effect to the
field then, after passing through lens L3, is an additional Fourier transform producing
the field

E�xi, yi� D �ej2kfg��xi, �yi� Ł
{ (

axi

�f

) (
byi

�f

)}
�1.207�

on the back focal plane of lens L3. From the above relationship, we see that the resultant
image is a grid of repeated input images.

1.7.2 Optical Correlators

Optical correlators determine whether a particular image exists within a given picture.
The two most popular types of correlators are the Vander Lugt correlator [1,12,13] and
the joint transform correlator [14].

1.7.2.1 Vander Lugt Correlator
The Vander Lugt correlator (VLC) was first proposed by Vander Lugt in 1964. The
VLC will be explained in two stages: a brief description of the principle in this section,
followed by more detailed mathematical expressions in the next section.

Figure 1.35a shows a schematic of the VLC correlator. The input image h�x1, y1� is
interrogated to determine if it has the same shape as a given reference image g�x1, y1�.
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Figure 1.35 Vander Lugt correlator (VLC). (a) Layout. (b) Fabrication of a VLC filter.

First, with the input h�x1, y1� D g�x1, y1� in the front focal plane of lens L2, its Fourier
transform

G�fx, fy� D jG�fx, fy�jej��fx,fy� �1.208�

is projected onto the P2 plane in the back focal plane of lens L2. The encoded filter,
whose transmission is the complex conjugate of Eq. (1.208),

GŁ�fx, fy� D jG�fx, fy�je�j��fx,fy� �1.209�

is inserted in the P2 plane. The light transmitted through the filter is the product of
Eqs. (1.208) and (1.209) and

E�fx, fy� D jG�fx,fy�j2 �1.210�
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This function E�fx, fy� has no spatial variation in phase, and the wavefront of the
incident light on lens L3 is parallel to the lens surface. The incident light converges to
the back focal point of lens L3 as indicated by the solid line where a photodetector is
located to measure the light intensity.

If, however, the input is h�x1, y1� 6D g�x1, y1�, then the light projected through the
filter is

H�fx, fy� D jH�fx, fy�jej�0�fx,fy� �1.211�

and the transmitted light through the filter on P2 becomes

E0�fx, fy� D jH�fx,fy�jjG�fx,fy�jej�0�fx,fy��j��fx,fy� �1.212�

The phase distribution is not uniform and not all the light converges to the back
focal point of lens L3. Moreover, the patterns of jH�fx, fy�j and jG�fx, fy�j may
not overlap and the total light power reaching lens L3 will be less than the case of
h�x1, y1� D g�x1, y1�. Hence, the input that best matches the reference image g�x1, y1�
gives the largest light intensity at the output.

1.7.2.2 Detailed Analysis of the Vander Lugt Correlator
It is not always a simple matter to fabricate a filter with the prescribed complex
transmission coefficient. One way, which is similar to fabricating a hologram, is
illustrated in Fig. 1.35b. From Eq. (1.160), when the reference image g�x1, y1� is put
in the front focal plane of lens L2, its Fourier transform,

E�x2, y2� D 1

j�f
G

(
x2

�f
,

y2

�f

)
�1.213�

is projected onto the film in the back focal plane. The factor ej2kf0 is supressed. A
parallel beam at angle � to the normal of the film is added at the same time.

The transmittance t�x2, y2� of the exposed and then developed film is

t�x2, y2� D t0 � ˇ

∣∣∣∣Aejky2 sin � C 1

j�f
G

(
x2

�f
,

y2

�f

)∣∣∣∣2 �1.214�

where t0 and ˇ specify the photographic characteristics of the film. Equation (1.214)
is rewritten as

t�x2, y2� D A2 C
(

1

�f

)2 ∣∣∣∣G
(

x2

�f
,

y2

�f

)∣∣∣∣2

C jA

�f
GŁ
(

x2

�f
,

y2

�f

)
ejky2 sin �

C A

j�f
G

(
x2

�f
,

y2

�f

)
e�jky2 sin � �1.215�

where t0 and �ˇ were suppressed. The third term of Eq. (1.215) is the most important
term. The desired quantity for the filter is GŁ�x2/�f, y2/�f� but this term has an extra
factor of ejky2 sin � . This factor, however, does not harm the operation but just shifts the
location of the correlation peak by � degrees from the center.
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Now, the input image h�x1, y1� to be interrogated is installed in the front focal plane
of lens L2 in Fig. 1.35a and the filter is installed in the back focal plane of the same
lens. The light transmitted through the filter is Fourier transformed by lens L3 and its
field E�x3, y3� in the P3 plane is given by

E�x3, y3� D 1

j�f
F
{

1

j�f
t�x2, y2�H

(
x2

�f
,

y2

�f

)}
fxDx3/�f,fyDy3/�f

�1.216�

Equation (1.216) has the same number of terms as Eq. (1.215), and we can designate
these terms as E1�x3, y3�, E2�x3, y3�, E3�x3, y3�, and E4�x3, y3�.

The first term is

E1�x3, y3� D 1

j�f
F
{

A2

j�f
H

(
x2

�f
,

y2

�f

)}
fxDx3/�f,fyDy3/�f

�1.217�

Recall that lens L3 performs the Fourier transform but not the inverse Fourier transform,
and

E1�x3, y3� D �A2h��x3, �y3� �1.218�

The inverted image of the input picture is seen around the origin of the P3 plane.
The contribution of the second term is

E2�x3, y3� D 1

j�f
F

{
1

j��f�3

∣∣∣∣G
(

x2

�f
,

y2

�f

)∣∣∣∣2 H

(
x2

�f
,

y2

�f

)}
fxDx3/�f,fyDy3/�f

�1.219�
Changing variables as

x2

�f
D %,

y2

�f
D $

Eq. (1.219) becomes

E2�x3, y3�

D � 1

��f�2

∫∫ 1

�1
G�%, $�GŁ�%, $�H�%, $�fe�j2��f�fx%Cfy$�d% d$gfxDx3/�f,fyDy3/�f

�1.220�
E2�x3, y3�

D � 1

��f�2
g���ffx,��ffy� Ł gŁ��ffx, �ffy� Ł h���ffx, ��ffy�fxDx3/�f,fyDy3/�f

Inserting fx and fy into the equation and using Rule (5) from the boxed note,
E2�x3, y3� is expressed as

E2�x3, y3� D � 1

��f�2
[g�x3, y3� ? g�x3, y3�]

Ł Ł h��x3, �y3� �1.221�

E2�x3, y3� is the autocorrelation of g�x3, y3� convolved with h��x3,�y3�. It is spread
around the origin and is considered background noise (zero order noise).
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The contribution of the third term is the most important one.

E3�x3, y3� D 1

j�f
F
{

A

��f�2
GŁ
(

x2

�f
,

y2

�f

)
H

(
x2

�f
,

y2

�f

)
ejky2 sin �

}
fxDx3/�f,fyDy3/�f

�1.222�
Changing variables as

x2

�f
D %,

y2

�f
D $

Eq. (1.222) becomes

E3�x3, y3�

D A

j�f

∫∫ 1

�1
GŁ�%, $�H�%, $�fej2��sin �/���f$e�j2��f�fx%Cfy$� d% d$gfxDx3/�f,fyDy3/�f

�1.223�
Equation (1.223) can be expressed as the convolution of three factors. Using the rules
in the boxed note, Eq. (1.223) is written as

E3�x3, y3� D A

j�f
gŁ��ffx, �ffy� Ł h���ffx,

� �ffy� Ł υ

[
�ffx, �f

(
fy � sin �

�

)]
fxDx3/�f,fyDy3/�f

�1.224�

Inserting fx and fy into the equation gives

E3�x3, y3� D A

j�f
gŁ�x3, y3� Ł h��x3, �y3� Ł υ�x3, y3 � f sin �� �1.225�

Using Rule (5) in the boxed note, Eq. (1.225) is expressed as

E3�x3, y3� D A

j�f
[g�x3, y3� ? h�x3, y3�]

Ł Ł υ�x3, y3 � f sin �� �1.226�

Equation (1.226) is the expression of the cross-correlation between g and h. When
g�x1, y1� and h�x1, y1� match, the peak value rises at

�0, f sin �� �1.227�

in the P3 plane as indicated by the dotted line.
Finally, the contribution of the fourth term of the Eq. (1.216) is considered.

E4�x3, y3� D 1

j�f
F
{ �A

��f�2
G

(
x2

�f
,

y2

�f

)
H

(
x2

�f
,

y2

�f

)
e�jky2 sin �

}
fxDx3/�f,fyDy3/�f

�1.228�

E4�x3, y3� is quite similar to Eq. (1.221). The differences are the minus sign in the front,
the absence of the complex conjugate sign on G, and the minus sign in the exponent
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(a) The following are relationships for the Fourier transforms of Fourier transforms:

�1� FfG�f�g D
∫ 1

�1
G�f�e�j2�fx df

D
∫ 1

�1
G�f�ej2�f��x� df

D g��x�

�2� FfGŁ�f�g D
∫ 1

�1
GŁ�f�e�j2�fx df

D
[∫ 1

�1
G�f�ej2�fx df

]Ł

D gŁ�x�

�3� FfjG�f�j2g D FfG�f� Ð GŁ�f�g
D g��x� Ł gŁ�x�

(b) The correlation symbol is ? and the correlation operation is defined as

�4� g�x� ? h�x� �
∫

g�%�hŁ�% � x� d%

D
∫

g�% C x�hŁ�%� d%

The operation g ? h is called the cross-correlation, and the operation g ? g is called the
autocorrelation. Thus, the relationship between the convolution and the cross-correlation
becomes

�5� g�x� Ł hŁ��x� D
∫

g�%�hŁ�% � x� d%

D g�x� ? h�x�

and from Rules (3) and (5)

�6� FfjG�f�j2g D [g�x� ? g�x�]Ł

of the last factor. Thus, the contribution of the fourth term is obtained directly from
Eq. (1.226) as

E4�x3, y3� D jA

�f
g��x3,�y3� Ł h��x3,�y3� Ł υ�x3, y3 C f sin �� �1.229�

The convolution of g and h appears around

�0, �f sin �� �1.230�

in the P3 plane as indicated by the dotted line.
In summary, the cross-correlation term E3�x3, y3� peaks up when h D g, indicating

a match. The peak appears at �0, f sin �� in the P3 plane. The value of � should be
chosen large enough to ensure that the E3�x3, y3� peak is well separated from the fields
E1�x3, y3� and E2�x3, y3� that are spread around the origin.
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Figure 1.36 Fingerprint interrogator. Correlation of fingerprints. Left: Reference fingerprint. Middle:
Sample fingerprints. Right: Correlation peak. Only the sample fingerprint that matches the reference
fingerprint generates a correlation peak. (Courtesy of A. Bergeron, J. Gauvin, and INO.)

Figure 1.36 shows the results when the VLC is applied in indentifying a specific
fingerprint from multiple samples. The similarity to the encoded fingerprint is indicated
by the brightness of the cross-correlation of E3�x3, y3�.

1.7.2.3 Joint Transform Correlator
The joint transform correlator (JTC) was first proposed by Weaver and Goodman in
1966 [13,14,15]. A schematic diagram of the joint transform correlator is shown in
Fig. 1.37. The difference between the VLC and JTC is the arrangement of the input.
In a sense, the former is arranged in series and the latter in parallel. With the VLC,
the Fourier transform H is projected onto the prefabricated GŁ filter to generate HGŁ,
while with the JTC, the input images are put side by side in plane P1 to generate
GŁH. The JTC is based on the principle of the lateral shift invariance of the Fourier
transform mentioned in Section 1.5.6.
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Figure 1.37 Joint transform correlator (JTC). (a) Step 1: Fabrication of the film t�x2, y2�. (b) Step 2:
Display of correlation.

The JTC procedure is a two-step operation. The first step is shown in Fig. 1.37a and
is the operation of the square detection of the Fourier transforms of the input images.
The second step in Fig. 1.37b is the illumination of the detected Fourier transforms to
display the cross-correlation.

In Fig. 1.37a, the reference image is placed a distance a to the left of the center of
the P1 plane, and the input image is placed a distance a to the right of the center. Before
considering the general case of an arbitrary input image h, we can gain some useful
insight into the JTC by examining the simple case of g D h. When g D h in Fig. 1.37a,
the input consists of two identical g images located side by side. The Fourier transform
of such a pair, which appears in the output plane P3, is

Ffg�x � a� C g�x C a�g D G�f��e�j2�af C ej2�af�

D 2G�f� cos 2�af

Thus, a sinusoidal striation appears in the recorded film pattern. It is this sinusoidal
striation that plays a key role in the JTC.

The developed film is now inserted in the front focal plane of lens L0
2 in Fig. 1.37b

for interrogation. The Fourier transform of the sinusoidal striation generates two peaks
in the output plane P4 (see Problem 1.3), indicating g D h.

If, however, g 6D h, the sinusoidal striation is absent from the film, and no peaks
appear in the output plane P4, indicating g 6D h. A more precise explanation follows.

The total input to the system is

g�x, �a, y1� C h�x1 C a, y1� �1.231�
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The transmittance of the exposed and then developed film is

t�x2, y2� D 1

��f�2

∣∣∣∣G
(

x2

�f
,

y2

�f

)
e�j2��a/�f�x2 C H

(
x2

�f
,

y2

�f

)
ej2��a/�f�x2

∣∣∣∣2
�1.232�

where the transmittance of the film was assumed to be linearly proportional to the
square of the incident field. Equation (1.232) is expanded as

t�x2, y2� D
(

1

�f

)2
[∣∣∣∣G

(
x2

�f
,

y2

�f

)∣∣∣∣2 C
∣∣∣∣H
(

x2

�f
,

y2

�f

)∣∣∣∣2

C GŁ
(

x2

�f
,

y2

�f

)
H

(
x2

�f
,

y2

�f

)
ej4��a/�f�x2

CHŁ
(

x2

�f
,

y2

�f

)
G

(
x2

�f
,

y2

�f

)
e�j4��a/�f�x2

]
�1.233�

Thus, the square detection generates a GŁH term.
The second step is the generation of the correlation peaks. As shown in Fig. 1.37b,

the film is placed in the front focal plane of lens L0
2 and is illuminated by a parallel

beam with amplitude A. The field in the back focal plane of L0
2 is

E�x3, y3� D A

j�f
F ft�x2, y2�gfxDx3/�f,fyDy3/�f �1.234�

Equation (1.234) can be calculated directly by comparing Eq. (1.233) with the VLC
results. The first two terms of Eq. (1.233) are compared to Eq. (1.219), and the last
two terms with Eq. (1.222). The final result is

E�x3, y3� D A

j�f
[g�x3, y3� ? g�x3, y3�

C h�x3, y3� ? h�x3, y3�

C g�x3, y3� ? h�x3, y3� Ł υ�x3 � 2a, y3�

C h�x3, y3� ? g�x3, y3� Ł υ�x3 C 2a, y3�]
Ł �1.235�

The last two terms of Eq. (1.235) are the cross-correlation terms appearing at �2a, 0�
and ��2a, 0�. If g and h are pure real, the two peaks are of identical shape.

When g D h, both curves are not only identical but their intensities peak up,
indicating a match.

The complex conjugate signs appearing in Eqs. (1.221), (1.226), and (1.235)
disappear if the �x3, y3� coordinates are further transformed as x3 ! �x3, y3 ! �y3,
namely, rotating the coordinates of �x3, y3� by 180° in its plane.

1.7.2.4 Comparison Between VLC and JTC
VLC and JTC are compared as follows [16,17]:

1. While VLC needs a prefabricated reference filter, JTC does not.
2. After the reference filter has been made, the VLC can interrogate the input in

one step. If the same reference image is used, countless interrogations can be
made without changing the filter. The JTC requires a two-step operation. For
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every interrogation, a Fourier transform filter has to be made, which then has to
be illuminated for the correlation peak.

3. VLC demands a very precise lateral alignment of the filter. Even though the
lateral location of the input image h in the P1 plane is arbitrary in Fig. 1.35a, its
Fourier transform H always appears at the same location in the P2 plane. The
location of the filter GŁ has to match precisely with this location of H. In fact,
it has to match within microns. In short, the location of h is arbitrary but that of
GŁ has to be very precise. JTC does not demand this precision.

4. The required diameter of the JTC lens is twice that of the VLC lens.
5. A higher signal-to-noise ratio (S/N) is obtainable with VLC because a larger

separation from the zero order terms is possible by increasing �, whereas with
JTC, the separation from the zero order term is limited by a and hence by the
size of the input lens.

1.7.3 Rotation and Scaling

Even though the JTC is impervious to lateral misalignment, its sensitivity is
significantly reduced if the input and reference images are rotated with respect to
one another or there is a difference in their sizes.

First, let us consider a rotation countermeasure [18]. This countermeasure is exp-
lained by way of example in Fig. 1.38.

The points on the rectangle are replotted in polar coordinates with *��� as the vertical
axis and � as the horizontal axis. To obtain the polar graph, the transformation

*��� D
√

x2 C y2

� D tan�1
(y
x

) �1.236�
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Figure 1.38 Polar coordinate representation of a rectangle. (a) Before rotation of the input. (b) After
rotation.
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was performed. Figure 1.38a shows the polar graph before the rotation of the rectangle
and Fig. 1.38b, after the rotation.

It is clear that the shape of the polar graphs are the same regardless of the rotation of
the input image. The only difference is a shift of the curve in the horizontal direction.
If the polar coordinate image is used as the input, the property of the lateral shift
invariance of the Fourier transform can be utilized.

The shape of the transformed result, however, depends on the choice of the center
of rotation. This polar graph method should be used in the Fourier transform domain
rather than in the input image domain because the location of the Fourier transformed
image is independent of the location of the input in the input plane.

Next, let’s look at a countermeasure for differences in scale [19]. Figure 1.39 shows
three similar triangles whose heights are in the ratio of 1:5:10. Figure 1.40 shows these
same triangles replotted on a logarithmic graph. The triangular shape is distorted but
all three are congruent. The locations of the logarithmic images are shifted to the right
according to the size of the input image. The logarithmic images can be used as the
input for the VLC or JTC processor when the scales of the inputs are different.

Logarithmic scaling for the VLC will be explained using mathematical expressions.
The transformation from the �x, y� plane to the �%, $� log–log plane is

% D log x, $ D log y �1.237�

The reference image g�x, y� in the xy plane is transformed to m�%, $� in the log–log
plane.

g�x, y� ) m�%, $� �1.238�

The image m�%, $� is used as the input to the VLC in the P1 plane in Fig. 1.35b in
order to fabricate the filter. In the P2 plane, this quantity is Fourier transformed to
M�u�. For simplicity, the one-dimensional, rather than the two-dimensional, Fourier
transform will be used.

M�u� D
∫ 1

0
m�%�e�j2�u% d% �1.239�

Taking the derivative of Eq. (1.237) gives

d%

dx
D 1

x

With the help of this derivative, M�u� is expressed in terms of x as

M�u� D
∫ 1

0
f�x�e�j2�u log x dx

x
�1.240�

Let’s rewrite the exponential by putting

Y D e�j2�u log x �1.241�

Taking the log of both sides of Eq. (1.241) gives

log Y D �j2�u log x log e

log Y D log x�j2�u log e

and hence,

Y D x�j2�u log e �1.242�
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Figure 1.40 The three similar triangles in Fig. 1.39 are replotted on log–log graph paper.
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Inserting Eq. (1.242) back into (1.240) gives

M�u� D
∫ 1

0
f�x�x�j2�u log10 e�1 dx �1.243�

If the same is repeated using a ln–ln graph instead of log–log graph, Eq. (1.243)
becomes

M�u� D
∫ 1

0
f�x�x�j2�u�1 dx �1.244�

where f�x� is defined in 0 � x < 1. This integral is known as the Mellin transform;
namely, the Fourier transform of the logarithm of the input function is the Mellin
transform of the input function. The VLC filter MŁ�u� is made out of M�u� according
to the method described in Section 1.7.2.2.

Next, the input image h to be interrogated has to be ln–ln transformed in a similar
manner. Let us say the input image h is a times the reference image g, namely,

h�x, y� D g
(x

a
,
y

a

)
�1.245�

The ln–ln transform of Eq. (1.245), ma�%, $�, is put into the P1 plane in Fig. 1.35a.
The x component of the output in the P2 plane is

Ma�u� D M

{
g
( x

a

)}
�1.246�

where Mf g represents the operation of the Mellin transform.
From Eq. (1.244), Ma�u� is

Ma�u� D
∫ 1

0
g
(x

a

)
x�j2�u�1 dx �1.247�

Putting x/a D X gives

Ma�u� D a�j2�u
∫ 1

0
f�X�X�j2�u�1 dX �1.248�

Note the similarity between Eqs. (1.244) and (1.248). In order to rewrite the first factor
of Eq. (1.248) as a power of e, let

Y D a�j2�u

ln Y D �j2�u ln a

Y D e�j2�u ln a �1.249�

Putting Eq. (1.249) into (1.248) and comparing with Eq. (1.244) gives the final result:

Ma�u� D e�j2�u ln aM�u� �1.250�

The enlargement of the input generates an additional phase shift.
Ma�u� is the pattern projected to P2 in Fig. 1.35a, where the Fourier transform

MŁ�u� of the reference image has already been placed. Thus, the input to lens L3 in
Fig. 1.35a is

MŁ�u�Ma�u� D e�j2�u ln ajM�u�j2 �1.251�

where �f was assumed unity for simplicity.
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The output from lens L3 is now proportional to

[m�x3� ? m�x3�]
Łυ�x3 C ln a� �1.252�

Thus, the magnitude of the correlation peak is always

[m�x3� ? m�x3�]
Ł

regardless of the enlargement factor a. Only the location of the peak shifts in accordance
with the enlargement a.

1.7.4 Real-Time Correlation

Correlators have many practical applications [13,15]. They are used as robotic eyes in
automatic assembly lines, and as security devices for checking biometric indicators such
as fingerprints, facial images, voice, and DNA. For applications such as these, correlators
with real-time response are crucial. The bottleneck for the real-time operation of either
the VLC or JTC is the recording of G and H by means of photographic film, which acts
as a square detector to produce GŁH. The photographic film can be replaced either by a
photorefractive (PR) crystal whose index of refraction is changed by light intensity (see
Section 5.6) or simply by using a CCD camera with the camera lens removed.

Figure 1.41 shows an example of the real-time operation of the JTC using a
photorefractive crystal. The pattern of jG C Hj2 is generated by laser light S1 from
the left. This pattern is recorded by the photorefractive crystal in the P2 plane. The
recorded pattern is then read by laser light S2 from the right. S1 and S2 have different
wavelengths. The read image is projected into a CCD camera whose camera lens has
been removed. As far as the input method is concerned in this particular example, the
input scene h has been taken by another CCD camera whose camera lens is intact. The
input scene is displayed on the spatial light modulator (SLM) located in the input plane
P1. The SLM is a liquid crystal display panel, which is described in Section 5.10.4.4.
One of the advantages of the SLM is its optically flat display surface. The surface

g
h
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P2L1 L2 L ′1

SLMS1 S2

G + H  2

PR crystal

CCD camera
without lens

CCD
camerah Computer

Figure 1.41 Real-time JTC using a photorefractive (PR) crystal.
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Figure 1.42 Real-time VLC using optics and a computer.

condition of the images is an important factor in the performance of optical signal
processors that use coherent light.

Optical signal processing provides high speed and large information capacity while
computers provide versatility and reliability. The examples shown in Figs. 1.41 and
1.42 make use of both.

Now let’s look at the real-time VLC example shown in Fig. 1.42. The input image,
taken by the CCD camera whose lens is intact, is fed into the computer, and is displayed
on SLM1 in the input plane P1. The input image is then optically Fourier transformed
and projected over the computer-generated GŁ displayed on SLM2. The operation of
FfGŁHg is again performed optically and is projected onto the CCD camera whose
lens has been removed. The signal from the lensless CCD camera is fed back to the
computer. The computer processes the results to arrive at a final decision.

Figure 1.43 shows a similar arrangement but with the JTC. The process of obtaining
GŁH is quite similar to the previous case. The laser light S, which has been branched
off to the bottom of the figure, optically performs the operation of FfGŁHg to provide
g ? h on the CCD camera whose lens has been removed.

Figure 1.44 shows a system that relies more heavily on the computer. The scene
captured by the lensed CCD camera is displayed on the SLM. The optical system
Fourier transforms �g C h� to give jG C Hj2 on the lensless CCD camera. The computer
takes over the rest of the processing including the operation of FfGŁHg as well as the
decision on the result of the interrogation.

1.7.5 Cryptograph

Another special application of the spatial filter is the cryptograph [20,21] (meaning
encoding) of an image for security purposes. Optical signal processing needs to provide
fast and reliable identification of people and verification of their signatures on a
document.

First, the method of encryption will be described referring to Fig. 1.45a. Let the
input image to be encrypted be E0�x0, y0�. The Fourier transform of E0�x0, y0� is
projected onto the back focal plane of L2. The key card, onto which a white sequence
noise pattern n�x, y� is imprinted, is also placed in the back focal plane of L2. The
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input to the second Fourier transform lens L3 becomes

FfE0�x, y�gn�x, y� �1.253�

In the back focal plane of L3, the image given by Eq. (1.253) is further Fourier
transformed to

E�xi, yi� D E0��xi, �yi� Ł N�xi, yi� �1.254�

where N�xi, yi� is the Fourier transform of the white noise sequence. The output image
represented by Eq. (1.254) does not resemble the original input image E0�x0, y0�. The
original input image can be recovered only when the key card is used. In order to
photographically record E�xi, yi� including the phase onto a card, a reference plane
wave R�xi, yi� (not shown in the figure) is added at the time of recording. Thus, the
encrypted card has the intensity pattern I�xi, yi�:

I�xi, yi� D jR�xi, yi� C E0��xi,�yi� Ł N�xi, yi�j2

D jR�xi, yi�j2 C jE0��xi, �yi� Ł N�xi, yi�j2
C RŁ�xi, yi�[E0��xi,�yi� Ł N�xi, yi�]

C R�xi, yi�[E0��xi, �yi� Ł N�xi, yi�]
Ł �1.255�

Next, the method of decrypting the original image is explained referring to
Fig. 1.45b. The encrypted pattern I�xi, yi� is placed in the front focal plane of lens
L2, and all four terms in Eq. (1.255) are Fourier transformed in the back focal plane.
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Only the Fourier transform E3�x, y� of the third term in Eq. (1.255) is of prime concern,

E3�x, y� D R0FfE0��x, �y�g Ð n��x,�y� �1.256�

where for simplicity of expression, the direction of incidence of the plane reference
wave was assumed normal to the card surface in order to make R�xi, yi� a constant R0

across the surface of the card. If a key card imprinted with the pattern of n�1��x, �y�
is placed in the back focal plane of L2, the second factor in Eq. (1.256) is canceled.
The input to the Fourier transform lens L3 becomes R0FfE0��x, �y�g and in the back
focal plane of L3, the original input image is recovered. Recovery of the original image
is only possible for a key card imprinted with n�1�x, y�.

A method for fabricating a key card that can be used for both encrypting and
decrypting is described as follows. A pseudorandom pattern of 0s and 1s is written
onto a half-wavelength thick optical film on a substrate. The light passing through the
“0” location experiences no phase shift while that passing through the “1” experiences
a �-radian phase shift. The transmission pattern of the key card is then

n�x, y� D ej�b�x,y� �1.257�

where b�x, y� is the pseudorandom pattern. Note that such a pattern satisfies n�1�x, y� D
n�x, y� and can be used for both encrypting and decrypting. The pattern n�1��x, �y�
can be obtained by rotating the card by 180° in the plane of the card.

1.8 HOLOGRAPHY

Holography was invented by Dennis Gabor in 1948 when he was trying to improve
the quality of electron microscope images. The word holo in Greek means complete
and gram means recording, so that a “hologram” is a complete recording of the wave
scattered from an object. Holography uses both phase and amplitude distributions of
the scattered light to record the image of the object [1,6,8].

Both conventional photography and holography utilize light-sensitive film as the
recording medium. In both cases, the film records light intensity. In conventional
photography, the camera’s lens generates an image of an object in the film plane,
and the film records the image’s intensity pattern. In a hologram, the film is directly
exposed to the light scattered by an object. By itself, recording the scattered wave’s
intensity is not sufficient to make a hologram, as phase information would be
lost. This shortcoming is overcome by illuminating the holographic film with a
reference wave, as well as the scattered object wave. The holographic film records
the fringe pattern that results from the interference of the reference wave and the
scattered object wave. Fringe contours with high intensity indicate the scattered object
wave and the reference wave are in phase; likewise, low intensity contours indicate
the waves are out of phase. Note that the phase information has been converted
into an intensity pattern. The holographic film thus exposed and developed is the
hologram.

In order to see the image from the hologram, a laser beam illuminates the hologram.
The laser beam is diffracted by the recorded fringe patterns on the hologram. The
diffracted light recreates the image of the original object. An observer looking through
the hologram toward the laser will see a view just as if the real, original object were
present behind the hologram.
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Figure 1.46 Illustration of the Gabor-type hologram. (a) Fabrication of the hologram (point object).
(b) Reconstruction of the image.

1.8.1 Gabor-Type Hologram

Figure 1.46a shows an arrangement for fabricating a Gabor-type hologram. A parallel
laser beam illuminates both the object and the photographic film. A special feature of
the Gabor-type hologram is that only one beam illuminates both the object and the film.
In contrast, the Leith–Upatnieks type hologram uses two beams: one for illuminating
the object and the other for illuminating the film.

Let’s take a closer look at the geometry of the Gabor-type hologram in Fig. 1.46a.
For simplicity, the object at P0 is a point object. The reference beam R is incident along
the z axis, which is perpendicular to the film. The object beam is the wave scattered
from the object. The film is simultaneously illuminated by both the reference beam
and the object beam. The film records the interference pattern between the reference
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and object beams. For the recording of the interference pattern to be successful, it
is necessary to have a mechanically stable setup, a spectrally pure source, and a
high-resolution film. After being exposed, the film is developed, and the result is a
Gabor-type hologram.

The human eye is not able to decipher the interference pattern of the hologram
directly. Instead, the image has to be recreated by a process called reconstruction.

Let’s assume that a laser was used to provide the spectrally pure source for
creating the hologram, and that a similar laser with the same wavelength is used
in the reconstruction process. Figure 1.46b shows the arrangement for reconstructing
the image from the hologram. The hologram is illuminated from the back by the
reconstruction laser beam. The light scattered from the interference pattern on the
hologram forms the image of the original point object.

A more quantitative description is in order. Let’s say the film is in the �x, y� plane
at a distance d0 from the object. The field scattered by the point object is a spherical
wave centered at the object. The scattered field observed on the film is

O�x, y� D A

j�

ejkr

r
�1.258�

where

r D
√

d2
0 C x2 C y2

If d0 is much larger than the size of the photographic film, Eq. (1.258) can be
approximated as in Eq. (1.31)

O�x, y� D A

j�d0
ejk[d0C�x2Cy2�/2d0] �1.259�

The reference beam is a plane wave propagating in the z direction and is expressed by

R D R0e
jkz �1.260�

where R0 is a real number.
The photographic film is now exposed to the interference pattern of the object and

reference beams. The developed film looks like a Fresnel zone plate and is composed
of a set of concentric rings as shown below the hologram in Fig. 1.46a. The expression
t�x, y� for the transmission coefficient of the film is

t�x, y� D t0 � ˇjR0 C O�x, y�j2

D t0 � ˇ[R2
0 C jO�x, y�j2 C R0O�x, y� C R0O

Ł�x, y�] �1.261�

We are now ready to reconstruct the image from the hologram by illuminating it
with the reconstruction beam. The Fresnel diffraction pattern forms the reconstructed
image. In order to use the Fresnel diffraction formula Eq. (1.38), we need to find
the integrand E�x, y�, which is the light distribution that has just passed through the
hologram. For simplicity, the reconstruction beam is assumed to be the same as the
reference beam used at the time of the hologram’s fabrication. From Eqs. (1.260) and
(1.261), the expression for E�x, y� is

E�x, y� D R2
0 C jO�x, y�j2R0 C R2

0O�x, y� C R2
0O

Ł�x, y� �1.262�
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where t0 and ˇ were suppressed. The hologram is placed at z D 0 and the diffraction
pattern is observed in the �xi, yi� plane at z D zi.

The first two terms of Eq. (1.262) do not have much of a spatial variation, which
means that this portion of the reconstruction beam passes straight through along the z
axis with some attenuation. The Fresnel diffraction pattern E3�xi, yi� associated with
the third term of Eq. (1.262) is from Eqs. (1.38), (1.259), and (1.260):

E3�xi, yi� D AR2
0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0
Ffejk�x2Cy2�/2d0ejk�x2Cy2�/2zigfxDxi/�zi,fyDyi/�zi

�1.263�
Equation (1.263) can be rewritten as

E3�xi, yi� D AR2
0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0
Ffejk�x2Cy2�/2DgfxDxi/�zi,fyDyi/�zi �1.264�

where
1

D
D 1

zi
C 1

d0

Using the Fourier transform relationship Eq. (1.44) gives

E3�xi, yi� D AR2
0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zij�d0
Ð j�Dfe[�j��D�f2

xCf2
y�]gfxDxi/�zi,fyDyi/�zi

�1.265�

E3�xi, yi� D AR2
0

ejk�ziCd0�

j��zi C d0�
Ð ejk�x2

i Cy2
i �/2�ziCd0� �1.266�

Equation (1.266) is the expression for a diverging spherical wave that would be
established if a point source were located at a distance of zi C d0 from the observer.
Referring to Fig. 1.46b, this location is P0 and is exactly where the point object had
been placed. No light rays, however, converge to this point so that the image is a
virtual image of the point object.

Next, the diffraction pattern due to the fourth term is obtained in a similar manner
and the field observed is

E4�xi, yi� D AR2
0

ejk�zi�d0�

j��zi � d0�
ejk�x2

i Cy2
i �/2�zi�d0� �1.267�

Equation (1.267) is the expression of a spherical wave that would be established if
a point source were located at a distance of zi � d0 from the observer. Referring to
Fig. 1.46b, this location is P1 and is symmetric to P0 with respect to the hologram.
The spherical wave is convergent first in the region zi < d0 and actually converges at
zi D d0; then it is divergent again in the region of zi > d0. If a sheet of paper is placed
at zi D d0, a bright spot is observed. This bright spot is the real image of the point
object.

The object was assumed to be a point object, but the analysis can be extended
to a more complex object. The complex object can be considered as an ensemble
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of individual points; thus, the virtual image of the original object is observed at the
original object location. This image is called the orthoscopic image.

The real image is in a plane that is symmetric to the object with respect to
the hologram. This image is called the pseudoscopic image of the hologram and is
explained further in Section 1.8.3. The observer can view this image either by inserting
a piece of paper or by positioning his/her eyes at a distance zi > d0.

A major disadvantage of the Gabor-type hologram is that the wavefronts overlap.
With the geometry shown in Fig. 1.46b, the observer sees three wavefronts at the
same time; one from the undiffracted portion of the reconstructing beam that passes
straight through the hologram, one from the extension of the virtual image P0, and
one from the real image P1. When the observer tries to focus his/her eyes on P0, the
reconstruction beam and the blurred image of P1 are in the background and the quality
of the reconstructed image of the Gabor-type hologram is not high.

1.8.2 Off-Axis Hologram

The disadvantage of the Gabor-type hologram was overcome by Leith and Upatnieks in
1962. They proposed a scheme for slanting the direction of incidence of the reference
beam in order to spatially separate the locations of the reconstructed images. The
quality of the images were substantially improved.

Figure 1.47a shows an off-axis reference hologram. The reference beam is incident
on the hologram at an angle � with respect to the normal to the hologram and is
expressed by

R D R0e
jkx sin �Cjkz cos � �1.268�

where R0 is a real number, again. The same light beam will be used as the reconstruction
beam. The change to the slanted reference beam from the straight-on reference beam
needs only a minor modification to the previous results obtained with the Gabor-type
hologram in Section 1.8.1. The transmission coefficient of the hologram at z D 0 is

t�x, y� D t0 � ˇjR0e
jkx sin � C O�x, y�j2

D t0 � ˇ[R2
0 C jO�x, y�j2 C R0e

�jkx sin �O�x, y� C R0e
jkx sin �OŁ�x, y�]

�1.269�

In the process of reconstructing the holographic image, the hologram is illuminated
with a reconstruction beam that is the same as Eq. (1.268). The input pattern E�x, y�
to the Fresnel diffraction formula is obtained by the multiplication of t�x, y� and R.

E�x, y� D R3
0e

jkx sin � C jO�x, y�j2R0e
jkx sin � C R2

0O�x, y� C R2
0e

j2kx sin �OŁ�x, y�

�1.270�

The amplitude of the first two terms has practically no spatial variation; these terms are
the parallel beams in the � direction. The third term is identical to the earlier result in
Eq. (1.263). This means that tilting the reference beam does not affect the location of
the virtual image (as long as the reference beam is used as a reconstruction beam). The
virtual image occupies the same location as the original object, which in Fig. 1.47a
is along the z axis. The fourth term can be obtained the same way that Eq. (1.267)
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was obtained:

E4�xi, yi� D AR2
0
ejk[zi�d0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0
Ffejk�x2Cy2�/2D0 Ð ej2kx sin �gfxDxi/�zi, fyDyi/�zi

�1.271�
where

1

D0 D 1

zi
� 1

d0
�1.272�

The Fourier transform of the second factor in the braces is

Ffej2kx sin �g D υ

(
fx � 2 sin �

�

)
�1.273�

Using the convolution relationship and then the delta function property, Eqs. (1.110)
and (1.44), the final expression for Eq. (1.271) is

E4�xi, yi� D jAR2
0

��zi � d0�

ð exp

[
jk

(
z1 � d0 C �xi � 2d0 sin ��2 C y2

i C 4d0�zi � d0� sin2 �

2�zi � d0�

)]
�1.274�

Thus, the real image appears at

�xi, yi, zi� D �2d0 sin �, 0, d0� �1.275�

with some aberration for large �.
For small �, Fig. 1.47a summarizes the positions of the images. These images are

the virtual image at � D 0, the undiffracted beam at �, and the real image at 2�.
Except for the overlap region, the images are clearly separated and can be observed

without interference.

1.8.3 Pseudoscopic Image

When the observer views the real image, his/her eyes will see a peculiar image. Let’s
suppose the object is a bird, as shown in Fig. 1.47b. The object bird was facing the
observer when the hologram was made, but the reconstructed real image of the bird is
facing away from the observer. The hologram can record only the side of the object
that is facing the hologram. The light scattered from the other side never reaches the
hologram and cannot be recorded. Because of this, the observer looking at the real
reconstructed image sees the tip of the beak further away than the bird’s eyes. The
observer has the sensation of looking straight through the back surface and seeing the
front surface image from the inside out (like looking at the inside of a mask). Such an
inside-out image is called a pseudoscopic image.

1.8.4 Volume Hologram

Important applications such as the high-density recording of images and white light or
color holograms are based on the volume hologram. As the thickness of the emulsion
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Figure 1.48 Illustration of the reconstruction of the holographic image from a thin emulsion film.
(Cross section of the hologram). (a) Reconstruction of the virtual image. (b) Reconstruction of the real
image.

of the photographic film is increased, properties that do not exist with thin emulsion
holograms begin to surface. Before going into the case of the thick emulsion, the case
of the thin emulsion will be reviewed.

The geometry considered is exactly the same as already studied in Fig. 1.46,
but Fig. 1.48 is intended to show the finer details of the fringe patterns on the
hologram. Points Q1, Q2, . . . (actually rings) form an array of scattering centers. The
reconstruction of the image can be treated approximately as the problem of obtaining
the scattering pattern from a periodic array of point scatterers. As mentioned earlier
in Section 1.4.9, the field pattern can be separated into the element pattern, which
is the radiation pattern of the individual element, and the array pattern, which is the
pattern determined by the spacing between the elements and the overall dimension of
the array. The scattering pattern is the product of these two patterns as indicated by
Eq. (1.134).

When the emulsion of the film is thin, the size of the individual Q’s are comparable
to the light wavelength, and each Q scatters the light in all directions. Hence, the
element pattern is omnidirectional when the emulsion is thin.
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With the geometry shown in Fig. 1.48a, the path difference between P0Q1 and P0Q2

is exactly one wavelength and the rays scattered from Q1 and Q2 enhance each other
in the direction of P0Q2. The observer sees this peak of light as the virtual image.

Another peak is observed in the direction of propagation of the reconstruction beam
because the light scattered from Q1 and Q2 are also in phase in this direction. This
peak is associated with the undiffracted or zeroth order beam and is treated as noise.

Furthermore, with the geometry shown in Fig. 1.48b, the path difference between
Q1P1 and Q2P1 is exactly one wavelength and the array pattern makes another peak that
is associated with the real image. Thus, the array pattern of a thin emulsion hologram
has three peaks; namely, in the directions of the virtual image, the zeroth order noise,
and the real image. The sharpness of the image is determined by the product of the
element and array patterns. In the case of a thin emulsion, the element pattern is
omnidirectional and the sharpness of the image is predominantly determined by the
array pattern.

Next, the thick emulsion case will be explained. The scattering points Q1, Q2, . . .
grow into a set of mirror platelets made out of silver grains as shown in Fig. 1.49a. The
mirror platelets are formed by the standing wave pattern created by the interference
between the reference and object beams. They are oriented in the plane of the bisector
of the angle between the reference and object beams. If the reconstruction beam is
the same as the reference beam, the orientation of each mirror platelet is such that the
reflected beam is directed toward the extension of the object beams P0Q1 and P0Q2,
thus forming the virtual image.

Because of the reflective nature of the platelet mirror surfaces, the element pattern
has only one peak, which corresponds to the virtual image at P0. Light is not reflected
toward the real image P1, and no pseudoscopic image is observed from the volume
hologram.

As far as the array pattern is concerned, the spacing between the mirror platelets
is the same as for the thin emulsion, and the array pattern is also directed toward the
extension of the object beam. The diffraction pattern is the product of the element and
array patterns, both of which are sharply directed in the same direction. Thus, a very
sharp image is reconstructed from a thick emulsion hologram. This type of hologram
is often called a volume hologram.

Bragg reflection is the basis for X-ray analysis of atomic layers. Bragg reflection
takes place when the directivity established by the path difference between the rays
diffracted from adjacent atomic layers matches up with the direction of the specular
reflection from the surface of the atomic layer. With the geometry shown in Fig. 1.49c,
the Bragg reflection is in the direction given by

2d sin � D m� �1.276�

where � is traditionally taken with respect to the surface rather than the normal. In
other words, Bragg reflection takes place when the array pattern of the atomic layer
matches the element pattern of the atomic layer. So, we can say that the reconstruction
of the image from the volume hologram is based on Bragg diffraction.

A volume hologram is capable of storing a large number of images. If the images
are each recorded using a different angle of incidence for the reference beam, then the
images can selectively be reconstructed by adjusting the angle of the reconstruction
beam. The reason we do not see all the images reconstructed simultaneously is
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Figure 1.49 The reconstruction of the holographic image from a thick emulsion film. (Cross section of
the hologram). (a) Reference and reconstruction beams are identical. (b) Reference and reconstruction
beams are not identical. (c) Bragg reflection. (d) Polar diagram of the pattern.

explained as follows. Suppose the reference and reconstruction beams for a given
image are not identical, as shown in Fig. 1.49b. With the change in the direction
of the reconstruction beam, both the element and the array patterns shift, but they
shift differently. Their peaks no longer match, as indicated by the polar diagram in
Fig. 1.49c, and the sharp peak disappears from the product of the polar diagram.
The image can be reconstructed only when the reconstruction beam is identical to
the reference beam. This fact is used for the high-density recording of the volume
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Figure 1.50. Sample reconstructions from 1000 holograms recorded in a lithium niobate crystal.
(Courtesy of F. H. Mok [22]).

hologram. Figure 1.50 shows a sample of reconstructions from 1000 holograms
recorded in a 2 ð 1.5 ð 1-cm3 photorefractive crystal of lithium niobate, Fe:LiNbO3.
The direction of the reference beam was stepped at less than 0.01° [22,23].

The principle of the thick emulsion hologram is also applied to the white light
hologram. The direction of the peak of the array pattern moves with the wavelength of
the reconstruction beam but that of the element pattern more or less remains unchanged.
Hence, when white light is used for reconstructing the holographic image, the image is
reconstructed only by the light spectrum that creates a match between the peaks of the



92 FOURIER OPTICS: CONCEPTS AND APPLICATIONS

Figure 1.51 White light hologram. (Courtesy of Dainippon Printing Co.)

element and array patterns. Thus, the reconstruction process is wavelength selective,
and the reconstructed image is of a single color. The color is the same as that of the
reference beam used to fabricate the hologram. This kind of white light hologram is
called either a Lippmann or Denisyuk hologram. An example is shown in Fig. 1.51.

The wavelength selectivity of the thick emulsion hologram is also the basis of
the color hologram. As just mentioned, the thick emulsion hologram reconstructs the
image in the color used to fabricate the hologram. To produce a color hologram, the
thick emulsion hologram is triple exposed by three kinds of lasers whose wavelengths
correspond to basic colors such as red, green, and blue. When the hologram is
illuminated with white light, images of the three different colors are reconstructed,
and a color image is produced.

1.8.5 Applications of Holography

Holography has gained recognition both as an art form and as a measurement tool. A
few of the numerous applications are described next [8,24].

1.8.5.1 Three-Dimensional Displays
When a hologram is illuminated, it causes the wavefront that was originally formed by
the object to be reconstructed. It is the lens of the observer’s eye that forms an image
on the retina from the reconstructed wavefront. Depending on the viewing angle of the
observer’s left and right eyes relative to the hologram, the left and right eyes intercept
different portions of the reconstructed wavefront. Figure 1.52a is a photograph of the
reconstructed image taken by a camera set at the position of the left eye of the observer
and Fig. 1.52b is a photograph of the same image taken with the camera set at the
position of the right eye.

Notice the movement of the chess piece in the foreground with respect to the
others: Fig. 1.52a is what the left eye sees and Fig. 1.52b is what the right eye sees.
This difference of scenes produces the perception of viewing the original object as if
it were present in front of the observer in three dimensions. This is called binocular
parallax. Even with one eye, the side to side movement of the observer’s face provides
the observer with a differential movement (the foreground appears to move faster than
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(a) (b)

Figure 1.52 The reconstructed image of a hologram varies with the viewing angle. The upside down
image is the pseudoscopic image. (a) When viewed from the left. (b) When viewed from the right.

the background), and as the observer’s face moves hidden portions of the reconstructed
image become visible. These movement effects are usually perceived and contribute
to the observer’s sensation of seeing the image in three dimensions. This is called
movement parallax. The tendency of the observer’s eyes to focus on the object, which
is called accommodation, also contributes to the three-dimensional perception.

1.8.5.2 Microfiche Recording
Since the hologram does not use a lens in the fabrication process, the reconstructed
image has neither limitations on the depth of focus nor aberrations due to the lens.

The scattered wave from the object is spread and recorded over the entire hologram,
so that even if a portion of the hologram is missing or damaged, the same image could
still be reconstructed. The damage to the hologram results in an overall degradation
in quality, but no specific portion of the image is lost. Consequently, the hologram
has a high tolerance to mishandling and is ideal for applications such as high-density
microfiche recordings.

1.8.5.3 Measurement of Displacement
An ordinary photograph records only the intensity pattern, but the image reconstructed
from a hologram has both phase and amplitude information. If the light waves of the
reconstructed image are overlayed with those of the original object, an interference
pattern is generated. The interference fringes indicate minute distortions of the object
between its current state and its prior state when the hologram was recorded. This
technique is called interference holography. An interference hologram can be fabricated
by exposing a hologram twice to the same object, with and without the deformation.
The resultant fringe patterns are seen in the reconstructed image.
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Figure 1.53 Interferometric hologram of a photoelastic sheet under load.

(a)

(b)

Figure 1.54 A photoelastic sheet under three-point loading. (a) Fringes of the interferometric
hologram, which represent Fx C Fy. (b) Photoelastic fringes, which represent Fx � Fy . (Courtesy of
X. Yan, T. Ohsawa, [25] and T. Ozaki.)

An example of combining the interferometric hologram with photoelasticity is
presented in Figs. 1.53 and 1.54 [25]. With the geometry shown in Fig. 1.53, an
interferometric hologram is made to visualize the pattern of strain established in a
photoelastic sheet (e.g., PlexiglasTM). When a photoelastic sheet of uniform thickness
is loaded, the thickness becomes nonuniform. When the direction of the illuminating
laser beam is normal to the sheet surface, the phase change � associated with the
increase in the optical path length is

� D knt �1.277�
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where t is the increase in thickness. The hologram is doubly exposed. The first
exposure is made without compression and the second, under compression. Dark fringes
will appear in the reconstructed image where

� D �2n C 1�� �1.278�

due to the destructive interference between the two reconstructed images. This pattern
is called the isopachic fringe pattern, meaning the locus of points of constant thickness
of the sheet [26]. Both of the principal stresses Fx and Fy can be attributed to the change
in thickness of the sheet. t is proportional to the sum of Fx C Fy . From the isopachic
fringe alone, the contributions of Fx and Fy cannot be known separately.

Next, we will describe the procedure for observing the birefringence pattern of the
same sample with the same loading. In order to do so, a polariscope (Section 6.7) is
built around the sample. A polarizer is placed between the sample and the illuminating
laser light, and the hologram is replaced by an analyzer whose transmission axis is
perpendicular to that of the polarizer.

When the photoelastic sheet is stressed, the sheet becomes birefringent. That is,
if the direction of compression is in the x direction, the index of refraction seen by
the light polarized in the x direction is no longer the same as that of the y direction,
and the degree of birefringence is proportional to the difference Fx � Fy between the
principal stresses. The degree of birefringence can be observed using the polariscope.
With the isotropic (uncompressed) sample inserted in between the polarizer and the
analyzer, no light gets through. With the birefringent (compressed) sample inserted in
between the polarizer and analyzer, light is observed emerging from the analyzer in
accordance with the degree of birefringence caused by the stress. Thus, the polariscope
displays the pattern of the stress by means of the birefringence in the photoelastic sheet.
By combining Fx C Fy from the isopachic fringes with Fx � Fy from the photoelastic
fringes, it is possible to obtain Fx and Fy separately.

Figure 1.54a is the isopachic fringe pattern observed by means of the interferometric
hologram. Figure 1.54b is the photoelastic fringe pattern of the same sample under the
same compression as in Figure 1.54a observed by means of the polariscope.

1.8.5.4 Measurement of Vibration
Another application of holography is in recording vibration patterns. The hologram is
able to record fringe patterns on the order of microns. While the holographic film is
being exposed, both the object and the holographic plate must be very steady, otherwise
the fringe patterns cannot be recorded. This fact can be used conversely to record the
vibration pattern of an object since the vibrating portions of the object would appear
dark in the reconstructed image. Figure 1.55 shows an example of mapping vibration
patterns in a loudspeaker [27].

1.8.5.5 Nonoptical Holographies
So far, light has been assumed to be the wave source for generating holograms. In fact,
other types of waves are capable of forming an interference pattern that can be used for
generating holograms. For instance, microwave [8] and acoustic wave [28] holograms
are possible. These hologram images can then be viewed optically by photographically
reducing the dimensions of the hologram to the ratio of their relative wavelengths. By
doing so, one can visualize how microwaves radiate from antennas (radiation patterns)
or reflect from objects.
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(a)

(a) (b)

(c)

Figure 1.55 Images of a vibrating loudspeaker. (Courtesy of A. Marrakchi, J.-P. Huignard, and
J. P. Herriau [27].

Figure 1.56 shows an example of a microwave hologram used to examine the
radiation pattern from an antenna [29]. Figure 1.56a shows a photograph of the object,
which is a radiating monopole driven at the end of a microwave waveguide and
Fig. 1.56b shows the reconstructed image of the plane of the monopole. The hologram
reveals that the tip and the driving point are the major sources of radiation, and the
function of the antenna wire is simply that of a feed wire for bringing current to the
tip of the antenna. Figure 1.56c and 1.56d are the reconstructed images as the point of
observation moves away from the antenna.

Figure 1.57a shows the geometry of a side scan sonar. The ship tows the sonar
transducer whose beam is swept perpendicular to the direction of the ship’s motion.
The composite image is constructed as the ship cruises. The transducer is towed instead
of being kept aboard the ship in order to decouple the motion of the ship. Figure 1.57b
is the recorded image of a sunken ship resting on the sea bottom at a depth of 25 m.
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(c) (d)
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Figure 1.56 Visualization of a radiation pattern from a monopole antenna by means of a microwave
hologram. (a) Photograph of the monopole used as the object. (b) At the antenna plane. (c) At a plane
in the Fresnel region. (d) At the Fraunhofer region [29].

Figure 1.57c is the image of a bicycle sunken 4.2 m deep in the ocean [30]. The
sound wave signal was processed by synthetic aperture [8] holography and even the
spokes of the bicycle wheels can almost be resolved.

Another advantage of nonoptical holography is that an object imbedded in an
optically opaque medium can be visualized.

A further advantage of the nonoptical hologram over “shadowgrams” such as an
X ray is the freedom of choice of the hologram’s location with regard to the source
and object. With X rays, the film always has to be behind the object, which is not
true in holograms. A particularly useful example of this advantage is when nonoptical
holograms are used in geological surveys, where placing a film deep beneath the surface
is neither efficient nor desirable.

1.8.5.6 Computer-Generated Holograms
Holograms need not be fabricated using actual electromagnetic waves. They can be
computer generated from values based on theory [31,32]. For instance, holograms
can also be generated using the expected field pattern for a given object that can be
calculated using the Fresnel diffraction formula of Eq. (1.38) or (1.39). The interference
of the object and reference beams can then be calculated and drawn by computer.
This image is then photographically reduced so that the holographic image can
be reconstructed by light. Figure 1.58 shows an example of a computer-generated
hologram.
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(a)

(b) 

(c) 

Figure 1.57 High-resolution underwater acoustic images. (a) Geometry of the side scan sonar.
(b) Vineyard Sound Lightship on the sea bottom off Nantucket, Massachusetts, recorded with a
HYDROSCAN. (Courtesy of Klein Associates, Inc.) (c) Synthetic aperture holographic acoustic image
at 4.2 m. (Courtesy of K. Mano and K. Nitadori [30].)

Figure 1.59 shows another kind of computer-generated hologram. The image of
the hologram is reconstructed by light propagating in the plane of the hologram [33].
As shown in Fig. 1.59a, the reconstruction beam is fed through an optical fiber
pigtail. Figure 1.59b is a photograph of a scanning electron microscope image of
the computer-generated hologram. The pattern was generated using electron-beam
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(a) (b)

Figure 1.58. Computer-generated holography. (a) Hologram. (b) Reconstructed image. (Courtesy of
D. Asselin, A. Bergeron, and INO)

Fiber pigtail (a) (b)

(c) (d)
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Figure 1.59. Off-plane computer-generated waveguide hologram (OP-CGWH). (a) Geometry.
(b) Photograph of scanning electron microscope image of the hologram. (c) Designed pattern.
(d) Obtained pattern. (After M. Li et al. [33]. )

lithography. Figure 1.59c gives the desired pattern of the reconstructed image.
Figure 1.59d shows the reconstructed image from the fabricated computer hologram. A
hologram such as this can be used as an optical interconnect, where the output light from
an optical fiber has to be connected to multiple terminals through free-space propagation.

1.8.5.7 Holographic Video Display
Figure 1.60 shows a schematic of a holographic video display system [34]. The system
is intended to animate computer-generated holograms. The key component of the
system is the surface acoustooptic modulator (AOM) on which three of the line fringe
patterns are written for three primary color holograms.
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Figure 1.60 Schematic of a color holographic video display. (After P. St.-Hilaire et al. [33].)

Figure 1.61. A frame of the animated color computer-generated hologram of colorful donuts.
(Courtesy of P. St.-Hilaire et al. [33].)

The fringes of the holograms are scanned as a composite of line holograms. The
diffracted images from the line holograms are reassembled into a complete image of a
computer-generated hologram using horizontal as well as vertical scanners. The AOM
is made of a TeO2 crystal. A pair of interdigital electrodes are deposited on the crystal
surface. The interdigital electrodes launch a surface acoustic wave (SAW) due to the
piezoelectric effect in accordance with the video signal from the computer. The surface
wave spatially modulates the index of refraction due to the acoustooptic effect and writes
a one-line hologram on the crystal as it propagates along the crystal (see Example 5.6).
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When laser light is illuminated perpendicular to the surface, a diffracted image
moving at the speed of the surface acoustic image is generated.

The horizontal scanner is an 18-sided polygonal mirror. It scans in the opposite
direction to the movement of the diffracted image to immobilize the image. The
horizontal scanner also multiplexes the image of the crystal, creating a virtual crystal
that is exactly the same length as one line of the computer-generated hologram.

The galvanometric scanner shifts the horizontal one-line fringe vertically after each
horizontal scan completing the reassembly of the computer-generated hologram.

Figure 1.61 shows one of the frames of an animated color computer-generated
hologram of colorful donuts. Three primary color lasers were used simultaneously.
These are a HeNe laser at � D 633 nm for red, a frequency-doubled YAG laser at
� D 532 nm for green, and a HeCd laser at � D 442 nm for blue.

PROBLEMS

1.1 For a plane wave that is propagating (Fig. P1.1) in the direction

� D 45° � D 45°

the light field observed at P�2, 3, 4� ð 10�6 m is expressed as

E D E0e
j67.32�j2.44ð1015t

(a) Find the wavelength of light in the medium.

(b) Find the index of refraction of the medium.

1.2 The spatial frequencies of an incident wave (Fig. Pl.2) were measured along the
x and y axes as

fx D 0.6 lines/µm, fy D 0.8 lines/µm

The wavelength of the received light is � D 0.84 µm.

(a) What is the direction of propagation of the incident wave?

(b) What would be the spatial frequency if the measurement were made along
a line in the direction Ol D 3Oı C 4O?

45°

y

Direction of propagation

P (2,3,4) × 10−6 m
point of observation

n = index of refraction

z

x

45°

Figure P1.1 Geometry of the propagation.
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Figure P1.2 Geometry of the incident wave.
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Figure P1.4 Half-wave dipole antenna and its current distribution.
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1.3 Find the diffraction pattern from a film whose transmittance is modulated
sinusoidally as shown in Fig. P1.3:

t�x0, y0� D 1 C cos 2�fxox0

Assume that the size of the film is infinitely large.
1.4 Derive the radiation pattern of a half-wave dipole using Fourier optics. Assume

that the current distribution along the antenna is sinusoidal (Fig. Pl.4).

1.5 Match each of the letter apertures in Fig. P1.5a with its correct diffraction pattern
in Fig. P1.5b.

1.6 Figure P1.6a shows apertures of three of the fingerprints that appeared in
Fig. 1.36, and an aperture in the shape of a cartoon character. Figure P1.6b
shows the photographs of the diffraction patterns. Match the apertures with
their respective diffraction patterns.

1.7 The finest possible light spot is to be obtained using a finite size convex lens.
The aperture of the lens is square �x/a��y/a� and the focal length is f0.
The incident light is a parallel beam.

(a) What is the smallest spot size obtainable?

(b) What is the required size of a diffraction-limited lens that can resolve 1 µm.
The wavelength of the light is � D 0.555 µm and f0 D 50 mm. Assume a
rectangular lens.

1.8 Explain the principle of operation of a pinhole camera using Fourier optics
(Fig. P1.8). Assume the shape of the pinhole is a square.

1.9 An input function g�x0, y0� is placed in the front focal plane of lens L1 with
focal length f1 (Fig. P1.9). A second lens L2 with focal length f2 is placed
behind lens L1 at a distance f1 C f2 from L1. Find the expression for the field
at the back focal plane of lens L2.

1.10 The optical system shown in Fig. 1.33c is a Schlieren camera made by placing
an opaque dot or �/2-radian phase plate at the back focal point G0 of lens L2.
Let us say that the object is transparent but with a small variation of the index
of refraction so that the input function

g�x0, y0� D ej��x0,y0�

can be approximated as

g�x0, y0� D 1 C j��x0, y0�

(a) Find the expression for the output intensity distribution Ia�xi, yi� with the
opaque dot placed at the back focal point G0 of lens L2.

(b) Find the output intensity distribution Ib�xi, yi� with the �/2-radian phase
plate at the same location as the opaque dot in part (a).

(c) Compare the results of parts (a) and (b).
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Figure P1.5. Match the aperture with its diffraction pattern. (a) Apertures of letters. (b) Photographs
of diffraction patterns.
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(A) (B)

(C) (D)

(a)

(1) (2)

(3) (4)

(b)

Figure P1.6. Match the aperture with its diffraction pattern. (a) Apertures of fingerprints and a cartoon
character. (b) Photographs of diffraction patterns.
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Figure P1.8 Principle of the pinhole camera by Fourier optics.
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Figure P1.9 Two Fourier transform lenses in series.
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Figure P1.11 A convex lens with focal length f0 is used as the key card for encryption.
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Figure P1.12 Cassegrain reflecting telescope with obstruction. (a) Telescope. (b) Obstruction.
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Figure P1.13 Locations of the reconstructed images. (a) Fabrication of hologram. (b) Reconstructing
the images.
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1.11 With the encryption scheme shown in Fig. P1.11, if a convex lens of focal
length f0 is used as the key card for the encryption, what is the key card for
the decryption?

1.12 A Cassegrain telescope has a primary concave mirror and a secondary convex
mirror, as shown in Fig. P1.12a. The supports holding the secondary mirror
present an obstruction and act like a mask, as shown in Fig. P1.12b. Find the
diffraction pattern of the masked aperture shown in Fig. P1.12b.

1.13 A hologram was fabricated with the geometry shown in Fig. P1.13. Assume the
thin emulsion case. The object was placed on the z axis, which is perpendicular
to the hologram. A plane wave reference beam was incident at angle � to the
normal of the hologram. Find the locations of the reconstructed images when
the reconstruction beam is not identical with the reference beam and is incident
along the z axis.
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2
BOUNDARIES,

NEAR-FIELD OPTICS,
AND NEAR-FIELD IMAGING

When light travels from one medium into another, reflection and refraction usually take
place at the boundary. A portion of the light is reflected back into the first medium, and
the other portion is transmitted (refracted) into the second medium at the angle set by
Snell’s law. The laws of reflection and refraction are among the most basic principles
of optics.

Optical systems are made up of boundaries. One cannot have a component without
boundaries. A clear understanding of the boundary phenomena is most important,
particularly in the field of integrated optics, where the boundaries are so close together
that interactions become a serious problem. What will be treated here are simple
configurations, but an in-depth understanding of these configurations will provide a
solid foundation for solving more complex real-life problems, such as the photon
tunneling microscope, the scanning near-field optical microscope (SNOM), and the
high-density digital video disk (DVD).

2.1 BOUNDARY CONDITIONS

We will consider the simplest case when light is incident from medium 1 onto its border
with medium 2, as indicated in Fig. 2.1. Let the indices of refraction of medium 1 and
2 be n1and n2, respectively. On the boundary, there are five important conditions:

1. The frequency of light does not change across the border, unless one of the
media happens to be a nonlinear medium. In nonlinear media higher harmonics
are generated.

2. The wavelength either expands or contracts, according to the ratio of the indices
of refraction:

n1

n2
D �2

�1
�2.1�

110
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Figure 2.1 Wavefront and ray directions near the boundary.

The wavelength expands when light goes into a medium with a smaller index
of refraction. A medium with a smaller index of refraction is often called an
optically less dense medium.

3. Speaking in terms of electromagnetic theory, the ratio of light energy, contained
in the form of electric energy, to that in the form of magnetic energy is changed at
the boundary depending on the intrinsic impedance of the medium. The intrinsic
impedance �1 of medium 1 is

jE1j
jH1j D jE3j

jH3j D �1

�1 D
√

�0�r1

	0	r1
D �0

n1

�2.2�

where E1 and H1 are the electric and magnetic fields of the incident wave, and
E3 and H3 are the electric and magnetic fields of the reflected wave. Both waves
are in medium 1. The intrinsic impedance �0 of the vacuum is

�0 D
√

�0

	0
�2.3�

and its value in MKS units is 120
�. In Eq. (2.2), �0 represents the magnetic
permeability of free space, and �r1 is the relative magnetic permeability of
medium 1. With most of the materials treated here, the value of �r is unity, and
we will treat it as such unless stated otherwise. In MKS units, �0 D 1.2566 ð
10�6 henry/meter. (MKS units will be used throughout the book.) In Eq. (2.3),
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the quantities 	0 and 	r are the absolute and relative dielectric constants. The
value of the former is 	0 D 8.855 ð 10�12 farad/meter, and that of the latter
varies from medium to medium. In optics the index of refraction n is used more
often than 	r .

The index of refraction n is defined as the ratio of the wavelength in the
medium to that in vacuum. The wavelength � in a nonmagnetic medium is

� D v/f where v D 1/
p

�0	0	r

and that in the vacuum is

�0 D c/f where c D 1/
p

�0	0

hence,

n D �0/� D p
	r.

With media 1 and 2,
p

	r1 D n1

p
	r2 D n2

�2.4�

Similarly, for medium 2, the intrinsic impedance �2 is

jE2j
jH2j D �2 �2 D

√
�0�r2

	0	r2
D �0

n2
�2.5�

The ratio of the electric to magnetic field has to be changed as soon as the light
crosses the boundary.

The manner in which the transition takes place is governed by Maxwell’s
boundary conditions. These boundary conditions represent the fourth and fifth
items in our list of important conditions, and are stated below.

4. The tangential components of E and H are continuous across the boundary.
5. The normal components of D and B are continuous, where D and B are the

electric and magnetic flux densities.

The E field is often related to the voltage V and the H field to the current I, and
the ratio E/H is often related to the impedance V/I, even though no tangible medium
is present. It is more appropriate to say that the intrinsic impedance is defined by the
ratio of E to H of a plane wave in that medium.

The angles and amplitudes of the reflected and transmitted light are governed by
the above five conditions; three by frequency, wavelength and impedance conditions,
and two by Maxwell’s continuity conditions. In the following, using these conditions,
quantities associated with the boundary are found.

2.2 SNELL’S LAW

The relationship between the angles of incidence, reflection, and transmission (refrac-
tion) are found. If the incident light is sinusoidally varying in both time and space, then
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both the reflected and the transmitted waves have to vary sinusoidally accordingly. To
understand this fact, suppose that at a particular instance and at a particular location
of the boundary, the oscillation of the incident wave is at its maximum; then both
reflected and transmitted waves have to be at their maxima. Otherwise, even though
the boundary conditions can be met at a specific instance or at a specific location,
they cannot be met throughout time and the entire boundary surface. In other words,
in order to meet Maxwell’s continuity boundary condition, the wavelengths along the
interface surface must have the same temporal and spatial variation,

�z1 D �z2 D �z3 �2.6�

where �z1, �z2, and �z3 are the wavelengths measured in the z direction in the plane
of the incident, transmitted, and reflected waves. Instead of Eq. (2.6) in wavelengths,
the propagation constant ˇ1,2,3 D 2
/�z1,2,3 is often used to express this condition and
Eq. (2.6) is rewritten as

ˇ1 D ˇ2 D ˇ3 �2.7�

Equation (2.7) is known as either ˇ, k, phase, or momentum matching, but all mean
the same thing: wavelength matching.

The free-space wavelengths �1, �2, and �3 are determined solely by the refractive
indices of the media, and at the moment n1 6D n2 and �1 6D �2, according to Condi-
tion 2. How then is the condition of wavelength matching to be satisfied? The only way
to meet the wavelength matching requirement is for the directions of the transmitted
and reflected waves to be bent, as shown in Fig. 2.1. By decreasing the incident angle
�1 from 90° to 0°, the wavelength �z along the z direction increases from �1 to infinity.
Then, the condition for the wavelength matching is

�1

sin �1
D �1

sin �3
D �2

sin �2
�2.8�

One immediate result from Eq. (2.8) is that the angle of reflection �3 is identical to the
angle of incidence �1:

�1 D �3 �2.9�

Applying Eq. (2.1) to (2.8) gives

n1 sin �1 D n2 sin �2 �2.10�

which is Snell’s law. Snell’s law is one of the most used laws in optics.
Next, the relative amplitudes of the transmitted and reflected waves are considered.

2.3 TRANSMISSION AND REFLECTION COEFFICIENTS

The electric field transmission coefficient tE is defined as the ratio of the field E2 of
the transmitted wave to the field E1 of the incident wave. The electric field reflection
coefficient rE is defined as the ratio of the field E3 of the reflected wave to the field E1

of the incident wave. Analogous definitions tH and rH hold for the magnetic field H.
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The reflection and transmission coefficients depend on the angle of incidence and
the directions of polarization. Let us begin with the simplest case of normal incidence
and then proceed to the general case of an arbitrary angle of incidence.

2.3.1 Transmission and Reflection Coefficients (at Normal Incidence)

When the direction of propagation is normal to the boundary (see Fig. 2.2), both the
E and H fields are parallel to the interface. As shown in Fig. 2.2, the convention of
positive E and H is chosen with regard to the Poynting vectors s1, s2, and s3, which
point down, down, and up, respectively. For a description [1] about the directions of the
field, see Example 2.1. The Poynting vector s is the time rate of flow of electromagnetic
energy per unit area (the power intensity), and s D E ð H. Boundary Condition 4 is
used, and

E1 C E3 D E2 �2.11�

H1 � H3 D H2 �2.12�

From Eqs. (2.2) and (2.5), the above equations are written as

�1H1 C �1H3 D �2H2 �2.13�

E1

�1
� E3

�1
D E2

�2
�2.14�

H2

E2

s2

H1
H3

E1

E3

s1

s3

medium 2

medium 1

Figure 2.2 Transmission and reflection coefficients at an interface between two media at normal
incidence.
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From Eqs. (2.11) to (2.14), all of the following expressions for rE, rH, tE, and tH are
derived:

rE D rH D E3

E1
D H3

H1
D �2 � �1

�2 C �1
�2.15�

tE D E2

E1
D 2�2

�2 C �1
�2.16�

tH D H2

H1
D 2�1

�2 C �1
�2.17�

Note that tE and tH are not equal.
In optics, the index of refraction n rather than the intrinsic impedance � is used.

With the assumption that �r1 D �r2 , Eqs. (2.15) to (2.17) can be rewritten as

rE D rH D n1 � n2

n1 C n2
�2.18�

tE D 2n1

n1 C n2
�2.19�

tH D 2n2

n1 C n2
�2.20�

Example 2.1 Let medium 1 be air and medium 2 be glass. The index of refraction
of glass is n2 D 1.5 and of air is n1 D 1. Calculate the coefficients of reflection and
transmission associated with the air-glass interface for normal incidence.

Solution With n1 D 1.0, n2 D 1.5, Eqs. (2.18) to (2.20) become

rE D rH D � 1
5 �2.21�

tE D 4
5 �2.22�

tH D 6
5 �2.23�

Everything looks all right except Eq. (2.23). Can the transmission coefficient be larger
than 1? Let us examine this more closely [2].

Note from Eq. (2.18) when n2 > n1, the reflection coefficient becomes negative.
What does a negative value for the reflection coefficient mean? Reexamine Fig. 2.2
closely. The positive directions of E and H were chosen such that the positive directions
of E1 and E3 are the same but those of H1 and H3 are opposite; hence, when rH D � 1

5

it really means H3 points in the same direction as H1 and its magnitude is 1
5 jH1j, as

illustrated in Fig. 2.3a. Likewise, since rE is also negative according to Eq. (2.21), it
really means that the direction of E3 is opposite to E1 and its magnitude is 1

5 jE1j, as
illustrated in Fig. 2.3a. The resultant E field just above the boundary is jE1 C E3j D
4
5 jE1j and that just below the boundary is jE2j D 4

5 jE1j so that the boundary condition
for E is satisfied. Similarly, the resultant H field just above the interface is 6

5 jH1j and
that just below is 6

5 jH1j and both happily match up with the results of Eqs. (2.22) and
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Figure 2.3 Field and power redistributions and impedance at an air–glass interface: n1 D 1, n2 D 1.5.
(a) Field redistribution. (b) Power redistribution and impedance.
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(2.23). The intrinsic impedance in the glass is

�2 D �0

n2
D E2

H2
D

4
5E1
6
5H1

D �0

1.5

From this example, the following generalization can be made. When light is incident
from a medium of a higher intrinsic impedance (lower index of refraction) onto that
of a lower intrinsic impedance (higher index of refraction), the transmitted E field
decreases, whereas the transmitted H field increases as seen from Eqs. (2.16) and
(2.17). Whenever n2 > n1, tH in Eq. (2.20) is larger than unity! �

The transmittance T is defined as the power ratio of transmitted light to incident
light. The reflectance R is the power ratio of reflected light to incident light. The value
of T and R will be calculated for Example 2.1. (Note that transmission and reflection
coefficients are field ratios.)

Let P denote light power, s denote the Poynting vector, and A denote the area on
the interface intercepted by the light beams. For simplicity, A will be taken as a unit
area. For the present case, P D jsjA D jsj.

The incident light power is therefore

js1j D jE1×H1j D 1

�1
jE1j2 �2.24�

The reflected power is

js3j D jE3×H3j D 1

�1
jE3j2 D 1

�1
jrEE1j2 �2.25�

Hence, the reflectance is

R D js3j
js1j D jrEj2 D 1

25
�2.26�

The transmitted power is

js2j D jE2×H2j D 1

�2
jE2j2 D 1

�2
jtEE1j2 �2.27�

Hence, the transmittance T is

T D �1/�2�jtEE1j2
�1/�1�jE1j2 D �1

�2
jtEj2 D 1.5

1

(
4

5

)2

D 24

25
�2.28�

In terms of the H field, one has

js1j D �1jH1j2, js2j D �2jtHH1j2, js3j D �1jrHH1j2
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R D js3j
js1j D jrHj2 D 1

25
�2.29�

T D js2j
js1j

�2

�1
jtHj2 D 1

1.5

(
6

5

)2

D 24

25
�2.30�

which is consistent with the values calculated using the E field.

2.3.2 Transmission and Reflection Coefficients
(at an Arbitrary Incident Angle)

The values of the transmission and reflection coefficients depend not only on the angle
of incidence, but also on the direction of polarization, which is the direction of the E
field (some books define polarization in terms of H).

The propagation direction of the incident light and the normal to the interface define
a plane, which is referred to as the plane of incidence. Two polarizations of particular
interest are the E field polarized in the plane of incidence, and E polarized perpendicular
to the plane of incidence.Ł An incident wave with an arbitrary direction of polarization
can always be decomposed into these two polarizations.

The in-plane polarization, more commonly called parallel polarization, or p wave, is
considered first. In Fig. 2.4a, the y D 0 plane is the plane of incidence. The convention
of the positive directions of E and H are taken such that the Poynting vector s D E ð H
coincides with the direction of light propagation (see boxed note). The continuity
Conditions 4 and 5 are used. In medium 1, components of both incident and reflected
waves must be considered. The tangential components of the E and H fields on both

There is more than one combination of E and H that satisfies this convention. In order to
maintain consistency in the derivation of equations, henceforth in this text, we shall impose
the following additional constraint on the choice of positive E and H. For both parallel and
perpendicular polarizations, in the limit that the angle of incidence approaches 90°, all E
vectors shall point in the same direction. (Picture Figs. 2.4a and 2.4b with �1 approaching
grazing incidence.) This is convenient when dealing with optical guides, where the angles of
incidence at boundaries are often large. However, this constraint does lead to a peculiarity
at normal incidence. For parallel polarization at normal incidence, incident and reflected
E vectors point in opposite directions, whereas for perpendicular polarization, incident and
reflected E vectors point in the same direction, giving r? D �rjj for �1 D 0. For example, if
you examine Eqs. (2.35) and (2.40) for �1 D �2 D 0, you will find rjj D �r?. The difference
in sign is simply due to the difference in the conventions for positive E for the two cases.
In Fig. 2.4a, the direction of positive E3t is taken in the opposite direction to that of E1t

in Fig. 2.4a, while the positive directions of E1 and E3 are taken the same. Whichever
convention one chooses, the final result for a given configuration comes out the same, as
explained in Example 2.1.

Ł Sometimes these waves are called p waves and s waves, originating from the German terms of parallel
wave and senkrecht wave.



TRANSMISSION AND REFLECTION COEFFICIENTS 119

Medium 1

Medium 2

E1 E1n

E3t H3

E3n

E2n

E2t

E2

E3

H1

H2

E1t

0

q1

q1

q1

q1

u2

q2

q2

q2

q3

q3

q3

q3

y

x

x

z

(a)

Medium 1

Medium 2

H1 H1n

H3t E3

H3n

H2n

H2t

H2

H3

E1

E2

H1t

0 y z

(b)

: Vector into page
: Vector out of page

Figure 2.4 Boundary condition at the interface between two media. (a) Parallel polarization. (b) Per-
pendicular polarization.

sides of the boundary are equal; hence,

E1 cos �1 � E3 cos �3 D E2 cos �2 �2.31�

H1 C H3 D H2 �2.32�

Equation (2.32) can be rewritten further using Eqs. (2.2) and (2.5) as

1

�1
�E1 C E3� D 1

�2
E2 �2.33�
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From the continuity of the normal component of D, and from the equality �1 D �3, one
obtains

	r1�E1 C E3� sin �1 D 	r2E2 sin �2 �2.34�

A combination of any two boundary conditions listed above can provide the electric
field reflection (see boxed note) and transmission coefficients. The reflection coefficient
rjj for the E field is

rjj D E3

E1
D n2 cos �1 � n1 cos �2

n2 cos �1 C n1 cos �2
�2.35�

Similarly, the transmission coefficient tjj for the E field is

tjj D E2

E1
D 2n1 cos �1

n2 cos �1 C n1 cos �2
�2.36�

The subscript jj indicates the case when the E field is in the plane of incidence, as
shown in Fig. 2.4a. There is a difference between the values rjj and tjj for the E field
and the same quantities for the H field. (See Problem 2.1.)

For the s wave case of light polarized perpendicular to the plane of incidence
as shown in Fig. 2.4b, the reflection and transmission coefficients for the E field are
obtained in a similar manner. Boundary Condition 4 for the continuity of the tangential
components of E and H is used.

E1 C E3 D E2 �2.37�

H1 cos �1 � H3 cos �3 D H2 cos �2 �2.38�

Why does the wave reflect when a discontinuity in the index of refraction is encountered?
Let’s start with the case of reflection from a perfect conductor (mirror). As the electromag-
netic wave is incident upon the conductor, a current is induced on the surface of the conductor,
just as a current is induced on a metal wire receiving antenna. The induced current sets up a
field. The reflected wave is just the induced field. The amount of induced current is such that
the induced field is identical to the incident wave but exactly opposite in phase. Thus, the
resultant field just above the surface becomes zero. On the other hand, the field just below
the surface (inside the conductor) is zero. Thus, the continuity condition is satisfied.

When the second medium is a dielectric medium, the situation is slightly more compli-
cated. In the optical spectrum, when an E field impinges on a dielectric medium, the orbits
of the electrons in the medium become slightly displaced due to the E field, and a dipole
moment is induced. The time-varying nature of the incident E field causes these dipole
moments to vibrate. This vibrating dipole moment establishes the reradiating field. This field
radiates both in the direction of the original medium as well as into the second medium. The
former is the reflected wave and the latter is the transmitted wave. The relative amplitudes
of these two waves are determined such that Eqs. (2.35) and (2.36) are satisfied.
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Using Eq. (2.2), and �1 D �3, Eq. (2.38) becomes

cos �1

�1
�E1 � E3� D E2

�2
cos �2 �2.39�

Equations (2.37) and (2.39) are used to derive the expressions for r? and t?:

r? D E3

E1
D n1 cos �1 � n2 cos �2

n1 cos �1 C n2 cos �2
�2.40�

t? D E2

E1
D 2n1 cos �1

n1 cos �1 C n2 cos �2
�2.41�

The above four equations for rjj, tjj, r?, and t? are called Fresnel’s equations. Note that
for �1 D �2 D 0, Eqs. (2.40) and (2.41) match Eqs. (2.18) and (2.19), respectively.

In order to calculate Fresnel’s equations, it is necessary to know �2 using Snell’s
law, Eq. (2.10). One can also make use of Snell’s law to completely eliminate both
indices of refraction, n1 and n2. With Eq. (2.10), Eq. (2.40) can be reduced to

r? D � sin��1 � �2�

sin��1 C �2�
�2.42�

Similarly, but with a slightly longer derivation (see Problem 2.2), Eqs. (2.35), (2.36),
and (2.41) are reduced to

rjj D tan��1 � �2�

tan��1 C �2�
�2.43�

t? D 2 cos �1 sin �2

sin��1 C �2�
�2.44�

tjj D 2 cos �1 sin �2

sin��1 C �2� cos��1 � �2�
�2.45�

If Eqs. (2.42) and (2.44) are examined closely, one can verify that

1 C r? D t? �2.46�

This is a direct consequence of Maxwell’s continuity condition, as can be seen by
multiplying both sides of Eq. (2.46) by the incident field E1. The left-hand side of
Eq. (2.46) represents the tangential component of the resultant field just above the
interface and the right-hand side, the same just below the interface. It should be noted
that the same is not true for the relationship between rjj and tjj (see Problem 2.3).

To gain some insight into the actual quantities, let us calculate the values of the
transmission and reflection coefficients as a function of incident angle for a particular
interface. Figure 2.5 shows curves for the glass �n2 D 1.5� and air �n1 D 1� interface.
Figure 2.5 reveals some noteworthy features. All curves turn downward as �1 increases.
The transmission coefficients tjj and t? both decrease as the incident angle �1 increases,
and when �1 approaches 90°; that is, when the incident beam becomes nearly parallel to
the interface, the amount of transmitted light is almost zero. The decrease is especially
significant for �1 > 70°.
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interface (n1 D 1.0, n2 D 1.5).
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This information is put to good use in the following practical example. Suppose
that a glass lens is used to collect a diverging light source such as the emission from a
light-emitting diode (LED). The edge of a double convex lens, as shown in Fig. 2.6a,
should be avoided because the angle of incidence is large in this area and transmission
is small. The result is an inefficient light collection.

The meniscus lens alleviates this problem, as shown in Fig. 2.6b. But if the meniscus
lens is used incorrectly, the situation becomes even worse than with a double convex
lens, as indicated in Fig. 2.6c.

Another interesting observation from Fig. 2.5 is that the curve for rjj crosses the
zero axis. This means that there is no reflected wave at this angle. This angle is called
Brewster’s angle and is discussed in detail in Section 2.5. At this angle, there is no
reflected wave.

LED

LED

LED

(a)

(c)

(b)

Figure 2.6 Selecting a lens to collect the emission from an LED. (a) Increase in reflection toward the
edge of a double convex lens. (b) Minimal increase in reflection toward the edge of a meniscus lens.
(c) Increase in reflection toward the edge with a misused meniscus lens.



124 BOUNDARIES, NEAR-FIELD OPTICS, AND NEAR-FIELD IMAGING

2.3.3 Impedance Approach to Calculating Transmission
and Reflection Coefficients

In the case of normal incidence the formulas for t and r are Eqs. (2.15) to (2.17), which
are simpler and easier to remember than the equations for an arbitrary angle of inci-
dence. The simplicity of Eqs. (2.15) to (2.17) is the basis for the impedance approach
to calculating transmission and reflection coefficients. One defines an impedance out of
certain components of E and H chosen such that their Poynting vectors point normal to
the interface. From Fig. 2.4b, the impedances referring to the normal direction, which
are sometimes called characteristic wave impedances referred to the x direction [2],
are defined for incident and transmitted waves as

�1x D E1

H1 cos �1
D �1

cos �1
�2.47�

�2x D E2

H2 cos �2
D �2

cos �2
�2.48�

Replacing �1 and �2 in Eqs. (2.15) to (2.17) by �1x and �2x above, and then converting
� to n, one can obtain the expressions for an arbitrary angle of incidence given by
Eqs. (2.40) and (2.41). Equations (2.35) and (2.36) of the corresponding expressions
for the other polarization are also obtained in a similar manner, referring to Fig. 2.4a
and noting the sign convention mentioned in the boxed note. The impedance approach
is quite powerful in dealing with surface acoustic wave devices, where the index of
refraction is modulated in space and time, and the boundary conditions become more
complex.

2.4 TRANSMITTANCE AND REFLECTANCE
(AT AN ARBITRARY INCIDENT ANGLE)

The previous sections dealt primarily with the transmission and reflection coefficients
t and r, which are field ratios. Transmittance and reflectance, which are power ratios,
are studied in this section.

Referring to Fig. 2.7, consider the light power passing through a unit area on the
interface. According to the law of conservation of energy, the power incident on this
unit area has to be identical to the power emergent from the area. If this were not so,
the energy would accumulate, resulting in an ever increasing build up of energy on the
boundary. In applying conservation of energy, one has to realize two things:

1. Even if the amplitude of E is the same, the energy of the wave is different if the
medium in which the wave is propagating is different. The same is true for H.

2. The power flowing through a unit area on the interface depends on the direction
of incidence to the area.

The time rate of flow of the electromagnetic energy per unit area is given by the
Poynting vector s, where s D E × H. The magnitude of the Poynting vector, s D jsj,
represents the maximum instantaneous value of the electromagnetic power per unit
area (s has units of W/m2). Another quantity often used in optics is the irradiance I.



TRANSMITTANCE AND REFLECTANCE (AT AN ARBITRARY INCIDENT ANGLE) 125

A1

A1

A3

P3

P2

P1

Unit
area

Interface

Transmitted
beam

Incident
beam

Reflected beam

A2

Aq1

q1

Figure 2.7 Reflectance and transmittance.

The irradiance I is the magnitude of the time average of the Poynting vector, I D jhsij,
and it also has units of W/m2. Since E and H are sinusoidally varying, the irradiance
is I D 1

2 jE × Hj.
Using Eq. (2.2) or (2.5), the magnitude of the Poynting vector is given by

s D jsj D 1

�
jEj2 �2.49�

or

s D jsj D �jHj2 �2.50�

Suppose that the same energy flow, s0, is present in two different media such that
s0 D �1/�1�jE1j2 D �1/�2�jE2j2. What this means is that if �1 > �2, then jE2

1j > jE2j2.
The medium with the greater impedance has the larger E field.

As mentioned earlier, the power passing through the unit area in Fig. 2.7 depends
on the angle of incidence. Let us use the symbol P to denote maximum instantaneous
light power. For the geometry of Fig. 2.7, the incident, transmitted, and reflected light
powers are

P1 D s1 A1

P2 D s2 A2

P3 D s3 A3

�2.51�
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Also from Fig. 2.7, the areas A1, A2, and A3 are related to the area A on the interface
as follows:

A1 D A cos �1

A2 D A cos �2

A3 D A cos �1

�2.52�

As A is assumed to be a unit area, Eqs. (2.49), (2.51), and (2.52) are combined to give
the incident, transmitted, and reflected powers:

P1 D 1

�1
jE1j2 cos �1

P2 D 1

�2
jE2j2 cos �2

P3 D 1

�1
jE3j2 cos �1

�2.53�

The transmittance T is defined as the ratio of transmitted power to incident power:

T D P2

P1
D �1

�2

jE2j2
jE1j2

cos �2

cos �1
�2.54�

When �r1 D �r2, E2 D E1t0E

T D n2

n1

cos �2

cos �1
jt0Ej2 �2.55�

The value of T depends on the direction of polarization. For parallel (Tjj) and perpendic-
ular (T?) polarizations, t0E D tjj and t0E D t?, respectively, have to be used in Eq. (2.55).

The reflectance R is the ratio of reflected power to incident power,

R D P3

P1
D jE3j2

jE1j2 D jr0
Ej2 �2.56�

where R also depends on the polarization, and for parallel (Rjj) and for perpendicular
(R?) polarizations, r0

E D rjj and r0
E D r?, respectively, have to be used in Eq. (2.56).

(For general directions of polarization, see Ref. 1).
It is left as an exercise (see Problem 2.4) to show that

R C T D 1 �2.57�

for both directions of polarization. In practice, Eq. (2.55) is seldom used to calculate
T. Rather, the reflectance is first calculated via the simple relationship R D jr0

Ej2 and
then the transmittance is found by making use of Eq. (2.57), T D 1 � R.

Figure 2.8 shows the plots of transmittance and reflectance at the interface between
air and glass �n1 D 1.5� as a function of the incident angle �1. Note that light with
perpendicular polarization has a narrower range of good transmission. To achieve 90%
transmittance, the incident angle �1 has to stay smaller than 45° when perpendicular polar-
ization is used, but the incident angle can be extended to 75° if parallel polarization is
used.
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Figure 2.8 Transmittance and reflectance at the air–glass interface.

2.5 BREWSTER’S ANGLE

Of the four curves (for n1 D 1.0, n2 D 1.5� in Fig. 2.5, only one curve r crosses
the horizontal axis. The reflection coefficient r becomes zero near �1 D 56°, or to be
more exact, at �1 D 56°190; and there is no reflected wave.Ł This angle, labelled as
�p in Fig. 2.5, is called Brewster’s angle. Brewster’s angle is used to avoid reflection
from the surface. It is important to realize that Brewster’s angle exists only when the
direction of polarization is parallel to the plane of incidence.

The reflection coefficient r vanishes when the denominator of Eq. (2.43) becomes
infinity, namely, when

�1 C �2 D 90° �2.58�

which is known as Brewster’s condition. It is interesting to note that when Brewster’s
condition Eq. (2.58) is satisfied, the direction in which one would expect to find a
reflection if it were to exist (dashed line in Fig. 2.9) coincides with the direction
of polarization of the transmitted wave as shown in Fig. 2.9. From a microscopic
viewpoint, the reflected wave is generated by the oscillation of electric dipoles in
the transmission medium. The oscillating dipole does not radiate in the direction of
oscillation.

Ł Substituting �p D 56°190 into Eq. (2.36), one can see that t is not unity at �1 D �p, even though r is zero.
Why is this so? See Example 2.3.



128 BOUNDARIES, NEAR-FIELD OPTICS, AND NEAR-FIELD IMAGING

E1

E2

n1
n2

q1

q1

q2

q3

q2

(q1 = q3)
180° − (q1+q2)

Figure 2.9 Condition of Brewster’s angle.

The incident angle for Brewster’s condition can be calculated by combining
Eq. (2.58) with Snell’s law:

n1 sin �1 D n2 sin�90° � �1�

D n2 cos �1

Thus, Brewster’s angle �p is

�p D tan�1
(
n2

n1

)
�2.59�

Brewster’s condition can be interpreted as being a consequence of impedance
matching with reference to the vertical direction. As in Section 2.3.3, the characteristic
wave impedances �1x just above the interface and �2x just below the interface are
defined for parallel polarization as

�1x D E1

H1
cos �1 D �1 cos �1 �2.60�

�2x D E2

H2
cos �2 D �2 cos �2 �2.61�

where both �1x and �2x refer to the vertical direction. When Brewster’s condition,
Eq. (2.58), is satisfied, Eqs. (2.60) and (2.61) can be written as

�1x D �1 sin �2 �2.62�

�2x D �2 sin �1 �2.63�



BREWSTER’S ANGLE 129

Snell’s law in impedances can be expressed as

�1 sin �2 D �2 sin �1 �2.64�

With Eqs. (2.62)–(2.64)

�1x D �2x �2.65�

Thus, Brewster’s angle has led to the condition of impedance matching.
A good example of the use of Brewster’s angle is the window of a gas laser tube

of the external mirror type, as described in Example 2.2.

Example 2.2 Figure 2.10 shows a diagram of a gas laser tube with external mirrors.
The end windows of the tube are tilted at Brewster’s angle so that the reflection from
the windows will be minimized. What is the Brewster’s angle? Is the output of such
a laser polarized? If so, in which direction is it polarized? Assume that the index of
refraction of the glass window is n2 D 1.54.

Solution From Eq. (2.59) with n1 D 1, n2 D 1.54, Brewster’s angle is �p D 57°.
Brewster’s angle is applicable only to the wave with parallel polarization. The reflection
coefficient for the perpendicular polarization r? is calculated for comparison. From
Eq. (2.40) or (2.42), r? D 0.4. Compared to rjj D 0, there is a significant difference.
The external mirrors of the laser are usually highly reflective so that a large portion
of the light makes thousands of passes back and forth between the two mirrors. For
each pass through the laser medium, the light is amplified (this is a characteristic of
laser media and represents a situation dealt with in Chapter 14 in Volume II). Because
the perpendicular polarization suffers reflection losses at the windows, the losses for
this polarization outweigh the gain through the amplifying medium. In comparison,
the parallel polarization, which has no reflection losses at the windows, reaps the gain
of the amplifying medium. Light exits the laser by transmission through the external
mirrors. Even though the mirrors are highly reflective, a small amount is transmitted at
each light pass. After the first few passes, the light that exits the laser is predominantly
the parallel polarization: that is, the light that exits the laser of the external cavity type

qp

Brewster angle
window

No
reflection

External
cavity
mirror

External 
cavity mirror

No reflectionn

n

Figure 2.10 Laser cavity of the external mirror type.



130 BOUNDARIES, NEAR-FIELD OPTICS, AND NEAR-FIELD IMAGING

is predominately polarized in the plane made by the normal to the window and the
axis of the light beam. �

Example 2.3 Referring to Fig. 2.5, rjj D 0 at Brewster’s angle but the corresponding
transmission coefficient is 0.66. Since rjj D 0, why isn’t tjj unity?

Solution In applying conservation of energy, the angle dependency of the power flow
as indicated in Fig. 2.8 has to be considered, as well as the difference in E due to the
difference in media. These considerations were mentioned in Section 2.4. The law of
conservation of energy does not say that rjj C tjj D 1; but the law of conservation of
energy does say that Rjj C Tjj D 1. As a matter of fact, that rjj C tjj D 1 is not true is
seen from Eqs. (2.35) and (2.36). Equations (2.55) and (2.56) give

Rjj D r2
jj D 0

Tjj D 1.5 cos�33°410�
cos 56°190 ð 0.662 ³ 1.0 �

2.6 TOTAL INTERNAL REFLECTION

Consider the case when the light is incident from an optically dense medium (larger
index of refraction n1) onto that of an optically less dense medium (smaller index
of refraction n2) with the geometry shown in Fig. 2.11. If and only if the light is
incident from an optically dense medium onto a less dense medium, is there a chance
that the angle of the emergent light reaches 90° with an incident angle less than

n2

x

Medium 2

Less dense

Total internal
reflection

Transmission Medium 1
n1

Due to total internal
reflection

z
Dense

qc

Figure 2.11 Total internal reflection, n1 > n2, n D n2/n1 < 1.
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Total internal reflection.

90°. As soon as the emergent angle reaches 90°, total internal reflectionŁ takes place.
The angle of total internal reflection follows the law of reflection, which means the
angle of reflection is equal to the angle of incidence. The angle �c at which total
internal reflection starts to take place is called the critical angle and is calculated from
Eq. (2.10) as

�c D sin�1
(
n2

n1

)
�2.66�

In the field of fiber optics, total internal reflection at the boundary between the core
and cladding layers supports the guided wave in the fiber. The light propagates as it
is bounced back and forth.

Because of its durability, total internal reflection is sometimes used as a reflective
device in place of a metal-deposited surface mirror, but the disadvantage is the
restriction over the choice of incident angle.

2.6.1 Bends in a Guide

Changing the direction of an optical guide is often required. In many cases, a
change of direction by a total internal reflection mirror is preferred to gradual
bending of the guide. Gradual bending is limited to small bend angles. Typically,
the radius of curvature of the bends cannot be less than 10–30 mm because, if any
smaller, the incident angle to some portion of the wall of the guide becomes less
than the critical angle, as indicated by the dotted line in Fig. 2.12a, and the light
leaks.

A sharp bend, however, can be made if a flat mirror is placed at the bend [3,4]. The
flat mirror preserves the angle of the zigzag path of the ray in the guide, as shown by
the solid line, and the light does not leak. For instance, if the angle of incidence to the
flat mirror is 65°, that of the circular bend in this particular geometry is 55°.

Ł The terms total reflection and total internal reflection are interchangeable. Johannes Kepler (1571–1630)
experimentally discovered the existence of total internal reflection.
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Figure 2.12 Low-loss corner mirrors with 45° deflection angle for integrated optics. (a) Bend by
the total internal reflection flat mirror compared with that of a circular bend. (b) Scanning electron
microscope picture of the total internal reflection corner mirror. (Photograph courtesy of E. Gini,
G. Guekos, and H. Melchior [4].)

Figure 2.12b shows an electron microscope photograph of a GaAs rib guide mirror.
The insertion loss† of such a bend was 0.3 dB [4].

2.7 WAVE EXPRESSIONS OF LIGHT

Up to this point, boundary phenomena, such as reflection, refraction, total internal
reflection, and Brewster’s angle, have been described without explicit reference to the
wave nature of light. In the next few sections, the wave nature will be emphasized. By
using the wave expressions, finer details can be reworked.

† Let Pin be the power into the device and Pout be the power out of the device. The insertion loss of the
device is defined as

10 log
Pin

Pout
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2.7.1 Fields Near the Boundary

The expressions representing the fields near a discrete boundary between media 1 and
2 with the geometry shown in Fig. 2.11 will be described [5].

In medium 1, a plane wave propagating in the direction

k D kxOı C kyO C kz Ok �2.67�

is expressed from Eq. (1.22) as

E1 D jE1jej�k·r�ωt� �2.68�

where r is the position vector

r D xOı C yO C z Ok
The incident wave propagating in medium 1 is given by

E1 D jE1jej�k1xxCk1yyCk1zz�ωt� �2.69�

Similarly, the transmitted wave in medium 2 is

E2 D jE2jej�k2xxCk2yyCk2zz�ωt� �2.70�

Inserting E1 and E2 into the wave equation, r2E C �nk�2E D 0, gives the condition that
the sum of the squares of the k components has to equal the square of the propagation
constant in that medium; that is,

k2
1x C k2

1y C k2
1z D �n1k�

2 �2.71�

and

k2
2x C k2

2y C k2
2z D �n2k�

2 �2.72�

Equations (2.71) and (2.72) will be manipulated in order to clarify the allowed and the
prohibited regions of propagation.
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b H
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Figure 2.13 Wave vectors propagating in k space.
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Equations (2.71) and (2.72) are equations of spheres in k space, with radii n1k and
n2k. Figure 2.13 is a two-dimensional representation in k space, with ky D 0. In this
figure, propagation takes place only in the x and z directions. The angles that the radial

vectors
�!
0P1 (translated from

�!
P0

10 for convenience) and
�!
0P2 make with the kx axis are

the incident and emergent angles, �1 and �2, respectively. The wavelength matching
condition (phase matching condition) on the boundary for the z direction is satisfied

by ensuring that the projections of
�!
0P1 and

�!
0P2 onto the kz axis are the same, namely,

k1z D k2z D ˇ �2.73�

Equation (2.73) fixes the value of �2 for a given �1. With the phase matching condition,
Eqs. (2.71) and (2.72) become

k2
1x C ˇ2 D �n1k�

2

k2
2x C ˇ2 D �n2k�

2
�2.74�

Expressions for E1 and E2 will now be found. Referring to Fig. 2.13, one has
k2x D n2k cos �2, so that the transmitted wave can be expressed as

E2 D jE2jejn2k cos �2ÐxCjˇz�jωt �2.75�

Now, Eq. (2.75) will be rewritten in terms of the incident angle �1 and the transmission
coefficients tjj,?. Snell’s law, Eq. (2.10), gives

cos �2 D 1

n

√
n2 � sin2 �1 �2.76�

where

n D n2

n1

Henceforth, the symbol n without the suffix is used to denote the ratio of the indices
of refraction.

The expressions for E2 and E1 are

E2 D tjj,?jE1jejn1k[
p

n2�sin2 �1xC�sin �1�z]�jωt �2.77�

and

E1 D jE1jejn1k[�cos �1�xC�sin �1�z]�jωt �2.78�

Note that Eqs. (2.77) and (2.78) are equivalent if n is unity, as one would expect.

2.8 THE EVANESCENT WAVE

When light is incident from an optically dense medium onto a less dense medium, total
internal reflection takes place as soon as the emergent angle �2 reaches 90°. Let us take
a look at total internal reflection from the viewpoint of the requirements of the boundary
condition on the border. Since the wave is totally reflected back into the denser medium,
no field is supposed to be present inside the less dense medium. Does the field abruptly
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become zero on the boundary? Because of the boundary condition of continuity, the
field in the less dense medium cannot abruptly become zero. The presence of the so-
called evanescent wave (also called surface wave) solves this problem. The amplitude
of the evanescent wave at the boundary is the same as the field on the boundary of
the dense medium, but the amplitude of the evanescent wave decays very rapidly as it
goes away from the boundary into the less dense medium. Moreover, the evanescent
wave moves along the boundary in the z direction at the same speed as the incident
wave in order to satisfy the phase matching condition.

Let us study this mysterious evanescent wave quantitatively. Equation (2.77) is
the expression for the wave in the transmitted medium. The exponential term in this
equation contains a square root. In the present case, n < 1, so that the quantity inside
the square root becomes negative as �1 is increased. This means that, for large enough
�1, the square root term becomes a pure imaginary number j% and the expression for
the transmitted wave becomes

E2 D tjj,?jE1je�%xCj�ˇz�ωt� �2.79�

where

% D n1k
√

sin2 �1 � n2 �2.80�

The wave expressed by Eq. (2.79) is precisely the evanescent wave. Note from
Eq. (2.79) that the amplitude of E2 decays exponentially in the x direction, and there is
no sinusoidal phase variation in the x direction. On the other hand, the phase variation
in the z direction synchronizes with that of the incident wave. These are the major
characteristics of the evanescent wave. The effective depth h of the penetration of
the evanescent wave, which is defined as the depth where the amplitude decays to
1/e of that on the boundary, is 1/% from Eq. (2.79). Equation (2.79) is graphically
represented in Fig. 2.14. The equiamplitude lines are horizontal. The amplitude decays
exponentially with x. The equiphase lines are vertical and they translate in the z
direction with the incident wave.

In order to determine the amplitude of the evanescent wave at the boundary, let us first
turn our attention to the fields inside the optically dense medium. When total internal
reflection occurs, the optically dense medium contains both the incident wave, and the
wave that is totally reflected. While their z components of propagation are the same,
their x components of propagation are opposite. Because of the opposite directions
of propagation, they form a standing wave in the x direction in the optically dense
medium. In the less dense medium, only the evanescent wave exists. On the boundary,
the amplitude of the standing wave and that of the evanescent wave have to be matched.

In the following sections, the reflection coefficient for the case of total internal
reflection will be derived in order to calculate the reflected wave. Then, the reflected
wave will be used to find the standing wave in the dense medium, and finally the
amplitude of the evanescent wave at the boundary will be found.

2.8.1 Transmission and Reflection Coefficients for Total Internal Reflection

The reflection coefficients [5] for parallel and perpendicular polarizations will be exten-
ded to the case of total internal reflection. It will be assumed that Snell’s law still holds
true even in the case of total internal reflection because after all Snell’s law is derived
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Figure 2.14 Evanescent wave (n1 > n2).

from the k-matching on the boundary as illustrated in Section 2.2 and has to be satisfied
at all times. Writing Eqs. (2.35) and (2.40) in terms of the ratio n D n2/n1 gives

rjj D cos �1 � �1/n� cos �2

cos �1 C �1/n� cos �2
�2.81�

r? D cos �1 � n cos �2

cos �1 C n cos �2
�2.82�

For a given �1, the only unknown quantity in Eqs. (2.81) and (2.82) is cos �2.
Equation (2.76) gives an expression for cos �2. In the case of total internal reflection,
n < sin �1 and Eq. (2.76) is rewritten as

cos �2 D j

n

√
sin2 �1 � n2 �2.83�

in order to explicitly show that cos �2 is a pure imaginary number. Insertion of
Eq. (2.83) into Eqs. (2.81) and (2.82) gives

rjj D cos �1 � j
√

sin2 �1 � n2/n2

cos �1 C j
√

sin2 �1 � n2/n2
�2.84�

r? D cos �1 � j
√

sin2 �1 � n2

cos �1 C j
√

sin2 �1 � n2
�2.85�

Note that, in both the denominator and the numerator, the first term is real while
the second is imaginary. Equations (2.84) and (2.85) can be written in simpler form



THE EVANESCENT WAVE 137

if the polar coordinate representation of a complex number is used. First, since the
magnitudes of the denominator and numerator are identical, the absolute value of the
reflection coefficient is unity. Next, if the phase angle of the numerator is �υjj,?, and
that of the denominator is υjj,?, then

rjj D ej(jj where (jj D �2υjj �2.86�

r? D ej(? where (? D �2υ? �2.87�

and

tan υjj D
√

sin2 �1 � n2

n2 cos �1
�2.88�

tan υ? D
√

sin2 �1 � n2

cos �1
�2.89�

Thus, the magnitude of the reflection coefficient for the total internal reflection is
indeed unity but there is a phase lag on the boundary by (jj,? radians. The value of
(jj,? is zero at the critical angle and approaches �
 radians as �1 increases. Using a
trigonometric relationship with Eqs. (2.88) and (2.89), the difference becomes

tan�υjj � υ?� D cos �1

√
sin2 �1 � n2

sin2 �1
�2.90�

The phase shift difference (jj � (? D �2�υjj � υ?� can be used to make waveplates
(Section 6.3). A phase difference of 
/2 radians between the waves of parallel and
perpendicular polarizations results in a quarter-waveplate that can convert a linearly
polarized wave into a circularly polarized wave. See Example 2.4 for more details.
Such a quarter-waveplate is quite useful because it is independent of wavelength.
Another good feature of this device is its slow dependence on �1, as shown by the
dashed line in Fig. 2.15.

Example 2.4 A Fresnel rhomb makes use of the phase shift difference produced by
total internal reflection to convert a linearly polarized incident wave into a circularly
polarized emergent wave. With the proper choice of incident angle, the Fresnel rhomb
is designed to create a 45° phase difference at each of two total internal reflections,
in order to achieve the 90° difference between the waves of parallel and perpendicular
polarizations. The direction of the polarization of the incident wave is tilted 45° as
shown in Fig. 2.16, so that the incident wave is decomposed into equal amplitudes of
parallel and perpendicular polarizations.

These equal-amplitude component waves with 90° relative phase difference consti-
tute a circularly polarized wave (mentioned in Chapter 6). Find the angle � of incidence
into the Fresnel rhomb shown in Fig. 2.16. Assume n D 1/1.5.

Solution Since each phase difference 2�υjj � υ?� is 
/4, from Eq. (2.90), we have

tan



8
D cos �1

√
sin2 �1 � n2

sin2 �1
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Solving for sin2 �1 gives

�1 � x��x � n2� D A2x2

where

A D tan
/8

x D sin2 �1

This is a quadratic equation,

�A2 C 1�x2 � �n2 C 1�x C n2 D 0

with solution

x D �n2 C 1� š
√

�n2 C 1�2 � 4�A2 C 1�n2

2�A2 C 1�

�1 D sin�1�
p

x�

�1 D 50.23° and 53.26° �

Here, Eqs. (2.88) and (2.89) will be rewritten using the k-diagram mentioned in
Section 2.8.3 so that they will be in a form suitable for describing the phase delay at
the boundaries of the optical guide in the chapter to come. Let both the numerators
and the denominators of Eqs. (2.88) and (2.89) be multiplied by n1k. Comparing
with Eqs. (2.80), the numerators of both equations become % . From Fig. 2.13, the
denominators of Eqs. (2.88) and (2.89) become n2k1x and k1x, respectively.
Thus,

tan υjj D %

n2k1x
�2.91�

tan υ? D %

k1x
�2.92�

In the particle theory of light, a propagation constant represents something
proportional to the momentum of a photon, so that tan υjj and tan υ? can then be
interpretated as the ratio of momenta in medium 1 and medium 2.

Next, the transmission coefficient of total internal reflection will be considered. Keep
in mind that the meaning of the transmission coefficient in the case of the total internal
reflection is slightly different from the usual refraction. A simple model is that the
evanescent wave is a result of light energy that goes into the less dense medium only
for a short distance and then comes back again into the dense medium. The transmission
coefficient describes the magnitude on the boundary but just a short distance inside the
less dense medium.

An attempt will be made to find out how much light goes into the less dense
medium by calculating the transmission coefficient of the total internal reflection at the
boundary. Note from Eqs. (2.35) and (2.36) that

tjj D 1

n
�1 C rjj� �2.93�
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Figure 2.17 Polar coordinates of a complex-valued transmission coefficient.

and from Eqs. (2.40) and (2.41)

t? D 1 C r? �2.94�

Use of Eqs. (2.86) and (2.87) in Eqs. (2.93) and (2.94) and with the aid of Fig. 2.17
gives

tjj D 2

n
cos υjje�jυjj �2.95�

t? D 2 cos υ?e�jυ? �2.96�

Using Eqs. (2.88) and (2.89), cos υjj and cos υ? in Eqs. (2.95) and (2.96) can be further
rewritten as

tjj D 2n cos �1p
1 � n2

√
1 � �n2 C 1� cos2 �1

e�jυjj �2.97�

t? D 2 cos �1p
1 � n2

e�jυ? �2.98�

Recall that the momentum perpendicular to the boundary is kn1 cos �1. With an increase
in cos �1, this momentum increases, and also the magnitude of the transmission
coefficient into the second medium increases. This is as if the photon in the optically
dense medium is being pushed out into the less dense medium by this momentum. The
extent to which the evanescent wave protrudes out into the less dense material reaches
its maximum at the critical angle. The amount of phase shift, however, reaches zero at
the critical angle from Eqs. (2.88) and (2.89). This fact rejects the simple explanation
that the phase delay is the time needed for the evanescent wave to go out into the
less dense medium and come back into the dense medium. The evanescent wave and
phase delay indeed exist, but it cannot safely be said that the phase delay is due to the
round-trip time. Another example where the phase delay at the boundary has nothing
to do with penetration into the second medium is reflection from a perfect mirror. The
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reflection from the perfect mirror creates 
 radians of phase shift but has nothing to do
with the round-trip time in the mirror, since light does not go into the mirror at all. The
phase shift is needed to match the boundary condition. Goos and Hänchen conducted
interesting experiments to clarify these matters as described in the next section.

2.8.2 Goos-Hänchen Shift

Goos and Hänchen investigated the ray path associated with total internal reflection.
They wanted to determine whether or not a spatial lateral shift accompanies the phase
shift when light undergoes total internal reflection. One possibility is that the light
ray is reflected back immediately into the dense medium without a spatial lateral shift
but with (jj,?-radian phase delay as in the case of reflection from a surface mirror.
The other possibility is that the reflected light ray first penetrates into the less dense
medium and is laterally shifted along the boundary before going back into the dense
medium as well as undergoing the phase delay.

In 1947, Goos and Hänchen [6] looked at the difference between reflection from a
silver surface and total internal reflection at a glass–air interface. A clever experiment
was performed using a glass prism onto which a narrow strip of silver was deposited
along the center. As shown in Fig. 2.18, a wide light beam was incident on one end of
the prism at such an incident angle that total internal reflections took place repeatedly
inside the prism before the beam exited the prism and was projected onto the screen.
These total internal reflections took place only with the portion excluding the silver
deposit in the center. In the center, the light is reflected repeatedly by the silver strip as

Due to reflections
from silver deposit

Due to total internal
reflections

D P2

P2

P1

P1

q1

Q2

zs

Q1S

Incident
slit

Light source
Flat light beam

Reflection from silver deposit

Evanescent field associated
with total internal reflection

Silver deposit strip

Glass prism

pD

Figure 2.18 Goos and Hänchen experiment.
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Figure 2.19 The beam displacement of the Goos-Hänchen shift versus the angle difference (�1 � �c)
in degrees. (After H. K. V. Lotsch [7] and H. Wolter [8].)

it travels through the prism. On the screen, the translation between the two light beams
with different mechanisms of reflection can be compared, as shown in Fig. 2.18.

The explanation of the observed results is indicated by the diagram on the lower left-
hand side in Fig. 2.18. While the reflected light from the silver surface takes the direct
path SQ1P1, the light that has undergone total internal reflection penetrates the optically
less dense medium and then comes back into the optically dense medium taking the
route SQ1Q2P2, thus causing a beam displacement D between the two beams after
reflection. If the number of reflections is p, the lateral shift of the output beams on the
screen is pD. Goos and Hänchen experimentally verified the shift. Such a translation is
known as the Goos–Hänchen shift. The Goos–Hänchen shift is an important quantity
to consider when attempting to accurately estimate the penetration depth of the light
field outside an optical guide or to fully account for the phase shift associated with an
optical guide.

The original Goos–Hänchen experiments were refined to such an extent that the
modified ray model agrees quite well with the experimental values, as shown in
Fig. 2.19 [7,8]. For these experiments, glass with n D 1.520 was used as the optically
dense medium, and air as the optically less dense medium. Near the critical angle,
where the υ’s are at their minimum, the D’s are at their maximum. The value of the
beam displacement Djj with light polarized parallel to the plane of incidence is over
10 times the wavelength.

2.8.3 Evanescent Field and Its Adjacent Fields

Now we are ready to calculate the fields around the interface. In the dense medium,
a standing wave Es1 is formed by the incident and reflected waves. Using Eq. (2.86),
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the expression for the standing wave is given by

Es1 D E1[ej�k1xxCˇz� C ej��2υ�k1xxCˇz�]e�jωt �2.99�

and finally

Es1 D 2E1 cos�k1xx C υ�ej�ˇz�ωt�υ�, x < 0 �2.100�

where the subscripts jj and ? have been suppressed for convenience. Equation (2.100)
is the expression for a standing wave in the x direction and a propagating wave in
the z direction. The amplitude of Eq. (2.100) is plotted on the right in Fig. 2.14. The
position of maximum intensity is shifted downward by υ radians.

Because of the continuity condition, the amplitude jE2j of the evanescent wave has
to be identical to that of the standing wave Es1 evaluated on the boundary; hence, from
Eq. (2.79)

E2 D 2E1e
�jυ�cos υ�e�%xCj�ˇz�ωt�, x > 0 �2.101�

Equations (2.100) and (2.10l) together complete the expressions near the boundary.
With a decrease in the incident angle �1 from 90° approaching the critical angle �c,

both υ and % decrease and h�D %�1� increases according to Eqs. (2.80), (2.88), and
(2.89). This means that with a decrease in �1, the maxima shift toward the interface
and the evanescent wave shifts into the optically less dense medium, as illustrated in
Fig. 2.20. An analogy can be made with breaking a piece of wood. The sharper the
bend, the more the broken ends protrude.

In practice, with the wavelengths 0.85–1.55 �m and n1 ' 1.55, n2 ' 1.54, which
are normally used for the components of fiber optical communication systems, the
extent of the evanescent wave is of the order of 1–10 µm. The minimum required
diameter of the cladding layer can be estimated (see Chapter 11).
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Figure 2.20 Relationship between incident angle �1 and the shape of the evanescent waves, �1 > �c.
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In integrated optics, where the dimensions of the elements are quite small, a thorough
understanding of the evanescent wave is very important. A typical example of the use
of the evanescent wave is an optical guide coupler, such as shown in Fig. 2.21. An
optical coupler is used either for monitoring the signal of the main guide or dividing
the power into desired proportions.

When an auxiliary optical guide is put in the evanescent field of the main optical
guide, the auxiliary guide is excited by the evanescent field. The amount of excitation
can be controlled by either adjusting the spacing between the guides, the indices of
refraction of the media surrounding the guides, or the length of the region of interaction.
In fact, by adjusting these parameters properly, almost the entire energy of guide 1 can
be transferred into guide 2.

Another interesting phenomenon is that if the interaction region is made long
enough, the energy that was transferred to the auxiliary guide will itself set up an
evanescent field, which in turn excites the main guide and transfers energy back into
the main guide. If the guide is made out of an electrooptic material like lithium niobate,
LiNbO3, the index of refraction of the guide can be changed by an external electric field
(see Chapter 5). By careful design of the parameters of the coupler, an electronically
controlled optical switch can be fabricated. The optical switch based on coupling of
the evanescent field can achieve nearly 100% switching with a low control voltage,
typically less than 10 volts.

The phasefront of the evanescent wave moves at the same speed as that of the bulk
wave (wave inside the optically dense medium). It does not leave the surface, and no
energy flows out of the interface, and so no loss of energy takes place. However, as

Evanescent field
Coupled guide

Main optical guide

2

10

Figure 2.21 Optical guide coupling by the evanescent wave.

Optics is light
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in the example of the optical guide coupler, if there is another guide that can carry the
energy away, the evanescent wave provides the means of conveying energy from the
main guide to the second guide.

The evanescent wave can be compared to a banner attached to a train. The banner
moves with the train but has very little to do with the loss of energy of the train.
Should the banner be caught by an external obstacle, it will convey the train’s energy
into the external obstacle.

Another analogy might be the magnetic flux leaking out of a transformer. The leaked
magnetic flux is there all the time but contributes very little to the loss of energy of
the main source. But once a loop circuit is placed in the leakage field, the energy of
the main source can be transferred into the loop circuit.

2.8.4 k Diagrams for the Graphical Solution of the Evanescent Wave

Many of the expressions derived thus far have been expressed in terms of angles.
Here the same quantities will be expressed in terms of the kx vectors. From Fig. 2.13,
the expressions for the kx vectors are k1x D n1k cos �1 and k2x D n2k cos �2. There is
a one-to-one correspondence between k1x and �1, and likewise between k2x and �2

inside a given medium. It is sometimes easier to use k1x and k2x rather than angles. For
example, when analyzing the fields inside an optical guide having a rectangular shape,
the rectangular quantities k1x and k2x are much more convenient variables to use than
�1 or �2.

From Eq. (2.74), which was obtained by phase matching, ˇ can be eliminated to
give

k2
1x � k2

2x D �n2
1 � n2

2�k
2 �2.102�

Equation (2.102) is Snell’s law in k-coordinates (see Problem 2.8). Note that when
n1 > n2, the right-hand side of Eq. (2.102) is positive and there is a region where
k1x becomes too small (i.e., �1 too large) to maintain the left-hand side of Eq. (2.102)
positive and there is no real number k2x. Consequently, there is no transmitted light.
This is the region of total internal reflection discussed in Section 2.6. The only possible
way to keep the left-hand side positive is to make k2x a pure imaginary number šj%;
and in the case of the total internal reflection k2x is imaginary.

Thus, when total internal reflection exists,

k2x D šj% k1x D K �2.103�

where k1x is more conveniently written without the subscript. Inserting Eq. (2.103) into
Eqs. (2.74) and (2.102) gives

K2 C ˇ2 D �n1k�
2 �2.104�

K2 C %2 D �n2
1 � n2

2�k
2 �2.105�

Both of these curves are circles. The graph of Eq. (2.104) is the K–ˇ diagram and
the radius is n1k. The graph of Eq. (2.105) is the K–% diagram and the radius is

k
√

n2
1 � n2

2, as shown in Fig. 2.22. Note that the radius of the K–% diagram is smaller
than that of the K–ˇ diagram. For a given �1, draw in a straight line at �1 with respect
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Figure 2.22 K–ˇ and K–% diagrams for the graphical solution of the evanescent wave.

to the K axis. The K–ˇ diagram provides the values of K and ˇ directly. From the
value of K thus obtained, the K–% diagram gives the value of % and also determines
whether or not total internal reflection takes place. Thus, the two circles combined
provide % for a given �1. Figure 2.22 demonstrates how to use the diagram based
on what has already been calculated in Section 2.8.3. The diagrams are arranged in
descending order of the incident angle �1 in the optically dense medium.

In the top row of the diagram, �1 is large and is close to 90°. From the K–ˇ diagram,
K is small. For a small value of K, the K–% diagram provides a large value of % .
A large value of % means an evanescent wave, which decays very fast with distance
away from the boundary. The corresponding situation is labeled �1 in Fig. 2.20.

In the diagrams in the second row of Fig. 2.22, �1 is reduced to a value just slightly
above the critical angle. Compared to the top row diagrams, K increases and hence
% decreases, and the evanescent wave extends further into the optically less dense
medium. This corresponds to cases �2 and �3 in Fig. 2.20.

The diagrams in the third row explain what happens when �1 D �c. The value of K

becomes exactly the same as k
√

n2
1 � n2

2 and % D 0. The field does not decay with x
and the energy is lost into the less dense medium.

In the bottom row diagrams, �1 is reduced to a value below the critical angle,
�1 < �c. The value of K now becomes large and falls outside the K–% diagram. This
means that no evanescent wave exists.
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2.9 WHAT GENERATES THE EVANESCENT WAVES?

So far, only the evanescent wave that was generated by total internal reflection has
been discussed. Is this the only way to generate an evanescent wave? In this section,
the evanescent wave will be treated in a more general manner.

2.9.1 Structures for Generating Evanescent Waves

Let us consider a medium with index of refraction ni. As with Eqs. (2.71) and (2.72),
solving the wave equation in this medium requires that

k2
x C k2

y C k2
z D �nik�

2 �2.106�

If k2
x C k2

y C k2
z were bigger than �nik�2, in order to satisfy the boundary condition, at

least one of k2
x , k2

y , or k2
z has to become negative, and the corresponding kx, ky , or kz

becomes an imaginary number. There is an evanescent wave in that direction. For the
geometry so far discussed, k2z was made so large (in order to meet the phase match
boundary condition in medium 1) that k2x had to be an imaginary number.

A corrugated metal surface is another example of a geometry that supports an
evanescent wave [9]. The corrugation is oriented in the z direction, and the teeth in the
x direction, as shown in Fig. 2.23a. Assume there is no variation in the y direction,
meaning �y D 1 and ky D 0. A further assumption is made that the electric field is
zero on the contour of the corrugation.

In order to match the boundary conditions, a number of component waves have
to be summed. We realize immediately that the field distribution of the component
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Figure 2.23 Structures that support evanescent waves. (a) Corrugated metal surface. (b) Array of
metal pins.
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waves inside the slot space is proportional to a trigonometric function so as to
satisfy the condition of vanishing fields on both sides of the wall. To satisfy the
boundary condition, an integral multiple of a half-wavelength �zn/2 should fit the wall
dimension d:

�zn

2
n D d or kzn D 


d
n �2.107�

where n is an integer and the order number of the component waves. Note that kzn,
which describes the propagation constant of the nth order component wave in the
vicinity of a–a0, can be increased by reducing d. From Eq. (2.106), we have

k2
xn D

(
2


�

)2

�
(


d
n
)2

�2.108�

where kxn is the propagation constant of the nth order component wave in the x
direction.

The lower order component waves can propagate in both the x and z directions
because all values in Eq. (2.106) are real. For the higher order components whose n
is larger than a certain value, kx becomes an imaginary number. In this case, the wave
is an evanescent wave in the x direction and a propagating wave in the z direction.
As a matter of fact, when d is smaller than one-half of the free-space wavelength, all
component waves become evanescent waves.

Another structure that supports evanescent waves is shown in Fig. 2.23b. It is an
array of conductors. Again, on the surface of the conductors the field has to be zero. By
the superposition of many component waves with various propagation constants, this
boundary condition is met. Some of the component waves have to satisfy the condition
of Eq. (2.107) and become evanescent waves. These structures are used as evanescent
waveguides for both microwaves and light waves.

Example 2.5 A lossy glass is bordered by air in the x D 0 plane. The propagation
constant in the z direction on the border is ˇ C j˛. Find the expression for the
evanescent wave in the air near the boundary. Assume ky D 0.

Solution Let the lossy glass be medium 1, and the air be medium 2. The propagation
constants in air have to satisfy

k2
2x C k2

2z D k2 �2.109�

while the propagation constant along the boundary in the z direction in the glass is
ˇ C j˛. Phase matching along the z direction requires that

k2z D ˇ C j˛ �2.110�

Inserting Eq. (2.110) into (2.109) gives

k2
2x D k2 � ˇ2 C ˛2 � j2˛ˇ �2.111�
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The real part K and imaginary part % of k2x will be found. Putting

A D k2 � ˇ2 C ˛2

B D 2˛ˇ
�2.112�

gives

k2
2x D

√
A2 C B2ej��2(C2n
�

where tan 2( D �B/A� and n is an integer. Depending on n being even or odd, the
value of k2x is

k2x D
{

K � j%, n is even
�K C j%, n is odd

}
�2.113�

where

K D 4
√

A2 C B2 cos(

% D 4
√

A2 C B2 sin (

Finally, the expressions for the evanescent field become

E2 D E20e
%x�˛zCj�KxCˇz�ωt� �2.114�

or

E2 D E20e
�%x�˛zCj��KxCˇz�ωt� �2.115�

Equation (2.114) is not acceptable as a solution because E2 increases indefinitely with
an increase in x. Figure 2.24 illustrates the field distribution expressed by Eq. (2.115).
Comparing Fig. 2.24 to the distribution for lossless glass shown in Fig. 2.14, the entire
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Figure 2.24 Field distribution of a leaky wave.
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distribution is tilted and looks as if the wave is sinking into the glass to supply the
energy lost in the glass. The angle of the tilt depends on �K, and K vanishes when
˛ D 0. This kind of wave associated with the surface is called a leaky wave, meaning
that it loses energy as it propagates. �

2.10 DIFFRACTION-UNLIMITED IMAGES OUT OF THE
EVANESCENT WAVE

In Chapter 1, the observation regions of the diffraction pattern were classified into two
areas: far field and near field. The near field in this classification, however, means that
the distance between the aperture and the observation region is still large compared to
the light wavelength. In this section, the region of concern is within a few wavelengths
of the aperture. It would be more appropriate to call this region the very-near-field
region. To avoid confusion, we will use the term “very near field” whenever necessary,
but commonly used proper names like SNOM (scanning near-field optical microscope)
will be left unchanged.

A lens-type microscope forms a magnified image out of the radiating light wave by
means of lenses. The resolution of the microscope, however, is limited to the order of
one wavelength of the light.

On the other hand, the evanescent-field-type microscope forms the image out of
the evanescent wave generated by the object. An evanescent field to radiating field
converter is used to form the image. The resolution of the microscope is 10–20 times
better than lens-type microscopes. The resolution of the lens-type microscope is first
reviewed in the next section.

2.10.1 Resolution of a Lens-Type Microscope

The minimum detectable variation of a microscope objective lens will be calculated.
For the geometry shown in Fig. 2.25, a grating is used as the object. Assume that the
grating is illuminated by a parallel laser beam and the light distribution on the surface
of the grating is expressed by

E�x� D E0�1 C cos 2
fgx� �2.116�

where fg is the spatial frequency of the grating. The spatial frequency is the inverse
of the period t; that is,

fg D 1

t
�2.117�

For the simplicity at the expense of accuracy, the far field approximation will be
used. Inserting Eq. (2.116) into (1.36) gives

E��� D K

[
υ

(
sin �

�

)
C υ

(
sin �

�
� fg

)
C υ

(
sin �

�
C fg

)]
�2.118�

where K absorbs the necessary amplitude and phase factors. Besides the center radiation
lobe, Eq. (2.118) gives two side lobes in the directions of

� D š sin�1 �fg �2.119�
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Figure 2.25 Radiating field from the sinusoidal grating into the microscope objective lens.

Note that as the spatial frequency fg of the grating increases from zero, the direction
of radiation of the two side lobes moves from normal to parallel to the grating.

As shown in Fig. 2.25, only the portion of the scattered light that is intercepted
by the objective lens contributes to the formation of the image. Then, the maximum
spatial frequency fgM of the grating whose radiation lobe can still be intercepted by
the aperture of the lens is, from Eq. (2.119),

sin �M D �fgM �2.120�

where �M is the angle that the aperture subtends with respect to the normal of the
grating. The quantity sin �M is called the numerical aperture (NA) of the objective lens
and Eq. (2.120) is rewritten as

fgM D NA

�
�2.121�

The surface variation d is the distance between the peak and valley of the sinusoidal
variation of the grating. The surface variation is expressed as

d D t

2
�2.122�

Then, the minimum detectable variation dm is, from Eq. (2.117), (2.121), and (2.122),

dm D �

2NA
�2.123�

Equation (2.123) is known as Rayleigh’s resolution criteria of a diffraction-limited lens
(a lens with a perfect shape whose resolution is limited only by the finite size of the
lens). The conclusion is that sin �M cannot be larger than unity and the best lateral (in
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the x direction) resolution dm that can be achieved is one half-wavelength. This is the
case when the radiating field alone is used for forming the image. Is there any other
means of forming a light image and obtaining a resolution better than a half-wavelength
of light? The answer is yes, as will be shown next.

Let us turn our attention from the microscope objective to the field scattered out of
the grating. Inserting Eq. (2.117) into (2.119) gives the direction of the radiation lobe
in terms of the period of the grating:

� D sin�1
(
�

t

)
�2.124�

What happens if the period of the grating becomes shorter than one wavelength?
There is no � that satisfies Eq. (2.124), meaning there is no radiating field. Still, the
boundary conditions have to be satisfied along the contour of teeth of the grating. The
evanescent wave coasts the contour of the teeth and appears only in the region within
a few wavelengths of light from the surface and decays away exponentially with the
distance from the surface. Roughly speaking, information about variations longer than
one half-wavelength of light is carried by the radiating portion of the field, while that
of variations shorter than a half-wavelength, by the evanescent portion of the field.

The mathematical formulation of the evanescent wave has already been given by
Eq. (1.197) in connection with Eq. (1.201) or by Eq. (2.101). Optical microscopes
have been devised to collect the evanescent field and convert it into an image. These
microscopes have achieved resolutions much shorter than a half-wavelength of light.

2.10.2 Near-Field Optical Microscopes

The microscopes whose operation is based on the evanescent wave may broadly be
divided into two categories: the photon tunneling microscope (PTM) and the scanning
near-field optical microscope (SNOM) [10,11].

2.10.2.1 Photon Tunneling Microscope
Figure 2.26 shows the geometry of the photon tunneling microscope [12]. Input light is
incident from the convex side of the plano-convex objective lens, so that the condition
of total internal reflection is satisfied on the flat bottom surface of the flexible transducer
placed beneath the flat side of the plano-convex objective lens. The evanescent wave
is excited in the region of the tunneling gap. The reflected light is fed to the imaging
system of a video camera through the other side of the plano-convex objective lens.
The photons lost into the sample due to the short tunneling gap are responsible for
the reduction in the detected signal, which leads to information about the depth of the
tunneling gap.

The depth pattern of the sample is displayed as the brightness distribution in
the reconstructed image. The lateral resolution of the photon tunneling microscope
is diffraction limited in the same manner as a normal imaging system, but as far
as the depth information is concerned, the exponential decay of the evanescent
wave is used and the resolution is limited only by the gray scale of the video
camera.

Figure 2.27 shows the depth image (gray-scale image) of a single polyethylene
crystal and the processed 3D image of the same crystal when measured by a photon
tunneling microscope [13].
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Figure 2.27 (a) Gray-scale PTM image of a single polyethylene crystal. (b,c) Three-dimensional (3D)
images showing the topography from different viewpoints. (d) A single large crystal can be imaged with
the PTM in contact interference mode. (Courtesy of J. M. Guerra, M. Srinivasarao, and R. S. Stein [13].)
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Figure 2.28 Schematics of the scanning near-field optical microscope (SNOM).

2.10.2.2 Scanning Near-Field Optical Microscope (SNOM)
Figure 2.28 shows the geometry of the SNOM [14–16]. Images of subwavelength
resolution are obtainable. The surface of the sample can be illuminated from above,
underneath, or both by ordinary radiating laser light. The amplitude of the resultant
radiating and evanescent fields is collected with a 50–500-nm diameter probe at a
distance of 10–60 nm from the sample surface.

The evanescent field decays exponentially with distance away from the surface, and
information about the surface variation is lost as soon as the probe is outside the very
near field. Placing the tip in the very near field without hitting and possibly damaging
the sample is a challenge. There are more than a few techniques for preventing the
probe from crashing into the sample. When a voltage is applied between the metalized
tip and the sample, an electron tunnel current starts to flow as soon as the two are
brought close together. From the tunneling current the clearance is monitored. Another
technique is to monitor the change in the frequency of the mechanical vibration that
takes place when the probe is placed in proximity to the sample surface. Another
method is by the change of the capacitance between the tip and the sample, or by the
change of the shear force between the tip and the sample. As a matter of fact, the shear
force itself can be used to image the surface [17].

Figure 2.29 is the image of deoxyribonucleic acid, commonly known as DNA,
obtained by shear force imaging [18].

2.10.3 Probes to Detect the Evanescent Field

We will now explain how the probe converts the evanescent field into a radiating
field [19,20]. The evanescent field that is established on the boundary between the
optically dense and less dense media is used as an example. The direction of the
polarization of the wave is assumed to be perpendicular to the page or an s wave.
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Figure 2.29 Shear-force image of DNA. (Courtesy of M. F. Garcia-Parajo et al. [18].)
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Figure 2.30 Probe aperture excited by evanescent waves. (a) Probe excited by s wave. (b) Probe
above the p wave. (c) Probe excited by the p wave.

As shown in Fig. 2.30a, the two-dimensional model is considered. The x axis is
taken in the direction of the boundary and the y axis, vertically perpendicular to it.
The probe is placed with its aperture parallel to the boundary at a distance d away from
the boundary. The evanescent field in which the aperture of the probe is immersed is,
from Eq. (1.197),

E�d, z� D E0 exp[�2
fs

√
n2 sin � � 1d C j2
nfs�sin ��x] �2.125�

where n is the refractive index of the more dense medium, and the less dense medium
is air. The angle � is the angle of incidence of the light inside the more dense medium
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to the boundary. The field across the aperture is

Ea D 
( x

a

)
E�x, d� �2.126�

where a one-dimensional aperture with width a is assumed. The field reradiated toward
the photodetector due to Ea will be found using Eq. (1.177). For this purpose, the
Fourier transform of Eq. (2.126) is calculated:

	�fx, 0� D aA sinc [a�fx � f0�] �2.127�

where

A D E0 exp��2
fs

√
n2 sin2 � � 1d�

and

f0 D nfs sin � > fs

where the inequality sign is due to the evanescent wave.
The radiating field component of Eq. (2.126) is distinguished from that of the

evanescent field component before the equation is put into Eq. (1.177). The spectrum of
Eq. (2.127) is plotted in Fig. 2.31. As explained earlier in Section 2.10.1, whether the
component is radiative or evanescent is determined by whether the spatial frequency
is smaller or larger, respectively, than fs�D 1/��. The hatched region in Fig. 2.31 is
radiative, and the unhatched region is evanescent. When a photodetector is placed on
the y axis at (x, y), the radiating field received by the detector is obtained by inserting
Eq. (2.127) into (1.177):

E�x, y� D aA
∫ fs

�fs

sinc[a�fx � f0�]e
j2


p
f2
s �f2

x �y�d�ej2
fxx dfx �2.128�

The propagation medium between the aperture and the detector is assumed to be free
space rather than an optical fiber.

The proper choice of the aperture size of the probe is crucial. Let’s first consider
what happens if the aperture is too narrow, as shown in Fig. 2.31a. The factor a in front
of the integral in Eq. (2.128) becomes small. In addition, the sinc function is spread
so wide that the relative portion of the radiative component, which is inside the �fs

to fs region, is small compared to the entire region. Consequently, the radiating field
reaching the detector is weak, and the signal-to-noise ratio of the image deteriorates
even though a narrow aperture provides a higher resolution as a microscope. On the
other hand, if the aperture is chosen too wide, such as shown in Fig. 2.31b, the sinc
function shrinks around fx D f0. The radiative portion, which is inside �fs to fs, is
reduced, and the radiating field reaching the detector is again weak. In this case, the
spatial resolution of the microscope deteriorates as well.

Next, let’s consider the case when the direction of polarization is parallel to the page,
or a p wave as shown in Figs. 2.30b and 2.30c. When the aperture stays high above the
boundary as shown in Fig. 2.30b, the E field of the evanescent wave is undisturbed.
The direction of the E field is parallel to the y axis, and certainly there is no propagation
in the y direction because the electromagnetic wave does not propagate in the same
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Figure 2.31 Aperture size of the probe and Fourier transform spectrum. (a) A case of narrow aperture.
(b) A case of wide aperture.

direction as either the E or H field, but propagates in the direction perpendicular to
either the E or H field.

When the aperture is lowered to the boundary, however, the electric lines of force
start to curl so that they are terminated perpendicular to the metal surface of the probe
in order to satisfy the boundary condition of the E field, as shown in Fig. 2.30c. Now,
this curled E field has a component in the x direction and provides the possibility of
creating a radiating wave toward the y direction. Note, however, that if the shape of
the probe is symmetric, then half of the lines of force are bent toward the positive
x direction while the other half are bent toward the negative x direction. One would
think that the contributions of the lines of force curled in opposite directions would
cancel each other, thereby failing to excite a radiating wave in the y direction. This
thinking is not quite correct. Remember that there is a phase lag between the left and
right lines of force, and they do not quite cancel each other. The difference contributes
to a weak radiating wave toward the y direction. It is safe to say that the probe in this
configuration is more sensitive to the s wave than to the p wave.

In short, the probe aperture redistributes the evanescent wave energy into radiative
and evanescent field components, and the energy that has been converted into the
radiative component reaches the photodetector.
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Figure 2.32 Various apertures of SNOM probes at the tip of the optical fiber. (a) Heating and pulling.
(b) Selectively etched. (c) Flat tip.

2.10.4 Apertures of the SNOM Probes

The SNOM probes were first fabricated by applying a heating-and-pulling method to
an optical fiber. The tip was either bare or coated with such metals as silver (Ag),
aluminum (Al), or chromium (Cr). Probes of this type, however, have a long tapered
section, such as shown in Fig. 2.32a. The transmission loss is usually high and is in
the vicinity of 50 dB for an aperture diameter of 100 nm.

A shorter tip section, such as shown in Fig. 2.32b, is made by chemically etching
the tip of the optical fiber using an aqueous mixture of hydrofluoric acid (HF) and
ammonium fluoride (NH4F). The strength of the etchant and the immersion time control
the finish of the probe. A smoother etched surface is obtainable by dipping the fiber
without removing the acrylate jacket [21]. As the final step, the etched surface is coated
with a metal film.

The flat tip shown in Fig. 2.32c almost completely eliminates the tapered section.
The metal film is coated directly onto the probe (Fig. 2.32c), the flat end of the optical
fiber, and then the film is drilled by a focused ion beam (FIB) [22].

The diameter of the drilled aperture is approximately 50–100 nm. The transmission
loss is around 30 dB for an aperture diameter of 100 nm. This is an improvement of
20 dB over the tapered probe.

2.10.5 Modes of Excitation of the SNOM Probes

Five different modes of operation of the SNOM probe are listed in Fig. 2.33. [23]. The
collection mode shown in Fig.2.33(a) is the mode that has been dealt with so far. The
probe is used to pick up the field scattered from the target.

If the light path of the collection mode is reversed, the result is the illumination
mode shown in Fig. 2.33b. In the illumination mode, the optical fiber is driven by a
light source and the target is illuminated locally as the probe is scanned, analogous
to using a flashlight to illuminate a large object. The advantage of this mode is the
minimization of the background light.
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Figure 2.33 Various modes of SNOM operation. (a) Collection. (b) Illumination. (c) Reflection.
(d) Apertureless. (e) Fluorescence. L, laser; D, photodetector; V, vibrator; BPF, band-pass filter.

The reflective mode shown in Fig. 2.33c is the combination of the above two modes
using just one probe. The probe driven by a laser illuminates the object. The field
scattered from the object is collected by the same probe. A half-mirror separates the
transmitted and received light. The resultant directivity is the product of the directivities
of the collection and illumination modes, and the resultant directivity is narrower than
the individual directivity.

The apertureless mode is shown in Fig. 2.33d. The probe is made out of a solid
metal wire with a sharp tip. The tip of the probe is mechanically dithered along its
axis. The tip is illuminated with laser light, and because of the probe’s dithering, the
wave scattered from the probe is modulated. The photodetector exclusively detects the
modulated signal. The unmodulated background light is eliminated. Because the probe
does not contain an aperture, the tip can be made small to minimize the unwanted
disturbance of the field due to the presence of the probe.

With all modes of operation, the illuminating light can be either an evanescent or a
radiating wave, or even a combination of the two. The illuminating light does not have
to be an evanescent wave. However, for the microscope to obtain a subwavelength
resolution, the scattered field has to contain the evanescent field.

When a fluorescent substance is illuminated by light of a specific wavelength (pump
light), light with wavelengths longer than the pump light is reemitted due to interactions
occurring between light and matter. Figure 2.33e is an example of a SNOM probe in
the illumination mode that utilizes this fluorescent spectroscopy.

By chemically treating the sample, it is possible to label only one fluorophore per
molecule [18]. The area of illumination of the pump light through the SNOM probe is
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Figure 2.34 Near-field fluorscence image of DNA fragments labelled with rhodamine dye. (Courtesy
of M. F. Garcia-Parajo et al. [18].)

restricted to a diameter of approximately 100 nm. Figure 2.34 shows the fluorescent
image of a double-stranded DNA fragment labeled at one end with rhodamine dye.
Thus, the spectroscopic use of the SNOM makes it possible to monitor the structural
changes of a single biomacromolecule.

2.10.6 SNOM Combined with AFM

Figure 2.35 shows a SNOM combined with an atomic force microscope (AFM). In the
AFM, a sharp probe tip is attached to the bottom side of the cantilever, and a small
mirror is attached on the top side. The orientation of the cantilever is monitored by
the change in the direction of the laser beam reflected from the small mirror.

When the tip of the probe is brought closer than several nanometers to the sample
surface, an atomic force is experienced between the probe tip and the sample surface
in accordance with the distance between them. The cantilever is excited to vibrate by
a piezoelectric crystal. The phase and amplitude of the vibration are monitored by the
laser beam reflected from the small mirror. The phase and amplitude of vibration vary
with the distance of the tip to the sample surface because the atomic force varies. The
phase and amplitude are maintained constant as the cantilever is scanned laterally over
the sample surface by means of a feedback loop current to another piezoelectric crystal
that raises and lowers the sample stage. At the same time, this feedback loop current
provides information about the movement of the tip as it coasts the sample surface,
and this information is used to form the AFM image.

In Fig. 2.35a, a collection mode SNOM is combined with an AFM. The photodiode
is incorporated into the tip of the probe, and the SNOM signal is directly detected
by the photodiode. Images obtained by mechanical means, such as by the shear force
or atomic force microscopes, are often called topographic images as compared to the
images obtained by optical means.
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In Fig. 2.35b, an apertureless mode SNOM is combined with the AFM. The AFM
tip can be used as the apertureless optical probe with minimum modification [24].

Figure 2.36 compares images of the same test sample taken by the AFM and the
SNOM in the apertureless mode.

2.10.7 Concluding Remarks

The resolving power of the SNOM is of the order of tens of nanometers, while that
of an electron microscope is of the order of a nanometer. Even though the ultimate
resolution of the near-field optical microscopes is poorer than that of the scanning
electron microscope (SEM), the advantages of the photon tunneling microscope are that
it neither requires metallizing the sample nor causes the intrusive effects of electrons
to the sample. The very-near-field optical microscope is a valuable tool for revealing
faults, especially during the fabrication of optical devices, because the detected signal
is directly related to the severity of the faulty function.

The usefulness of the SNOM goes beyond that of being a mere microscope. When
combined with optical spectroscopy, the SNOM becomes a unique tool for studying
the local interaction of light with matter, even to the extent of allowing the in vivo
observation of the movement of a single biomacromolecule.

Another area of importance is the application of the SNOM to the development of
a high-density data storage. In the digital video disk (DVD) recorder, a focused beam
of laser light is used to read or write the marks and spaces (or “1” and “0” bits) in
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Figure 2.36 Comparison of images taken by AFM and SNOM. (a) Single-groove test sample
engraved by X-ray lithography. (b) Topographic image of the single groove determined by AFM.
(c) Optical image of the single groove determined by SNOM (amplitude). (d) Double-groove test
sample engraved by X-ray lithography. (e) Topographic image of the double groove determined by
AFM. (f) Optical image of the double groove determined by SNOM (amplitude). (After R. Bachelot,
P. Gleyzes, and A. C. Boccara [24].)
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Figure 2.37 Multichannel flat chip used as a scanner over a high-density memory disk. (After M.
Kourogi et al. [25].)

memory. Being a focused light beam, the narrowest spacing between the marks and
spaces cannot be less than a wavelength of the light. If, however, the light from the
SNOM probe is used for writing or reading the memory, the required spacings between
codes can be reduced by a factor of 10. The memory area density can be increased
by 100 times. The difficulty, however, is how to maintain a 10-nm separation between
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the probe and the memory disk, which is spinning at a rate equivalent to 1 m/s in
linear distance speed. This problem can be alleviated by the multichannel flat chip
approach, such as shown in Fig. 2.37. On a flat silicon chip (30 �m ð 150 �m)
an array of 80-nm apertures are micromachined, and this chip is slid over the oiled
memory disk surface. The flat bottom surface of the chip prevents the crash as well
as vibration. The multichannel approach reduces the required speed of spinning the
memory disk [25].

PROBLEMS

2.1 Derive the reflection coefficient rjj and transmission coefficient tjj for the H field.

2.2 Derive the following equation:

rjj D tan��1 � �2�

tan��1 C �2�

2.3 Explain why 1 C rjj 6D tjj even though 1 C r? D t? is true.

2.4 Prove that R C T D 1 for both directions of polarization.

2.5 From Eq. (2.42),

r? D � sin��1 � �2�

sin��1 C �2�

Prove that a wave with perpendicular polarization cannot have Brewster’s angle.
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Figure P2.6 When G1 and G2 are parallel, light 60 is reflected; however, when G2 is rotated 90° from
this position, the light 60 disappears.
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2.6 As shown in the Fig. P2.6, glass plates G1 and G2 are initially set parallel to
each other. While G1 remains fixed, G2 is able to rotate fully. The normals of
both glass plates are tilted by 57° from the vertical direction. The light beam li
is incident at 57° to the normal of the lower glass plate. The reflected light from
G1 is directed vertically upward, reflecting the light l0. When G2 is rotated by
90°, however, the exit light disappears. Explain why this exit light disappears.

2.7 Pulfich’s refractometer, which measures the index of refraction of fluid, is con-
structed as shown in Fig. P2.7. As the viewing angle �2 of the telescope changes,
an angle of �2 is created such that half of the field is bright and the other half
dark. The surface of the interface between the liquid under test and the base
glass is illuminated by diffuse light (light with all angles of incidence). The
index of refraction (n2) of the glass is larger than nx of the fluid. Find the index
of refraction nx of the fluid when the emergent angle of this half-bright and
half-dark condition is �2.

2.8 The expression for Snell’s law in k coordinates is

k2
1x � k2

2x D �n2
1 � n2

2�k
2

By referring to Fig. 2.13, rewrite the k-coordinate expression of Snell’s law into
the angular expression of Snell’s law.
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3
FABRY–PÉROT RESONATORS,

BEAMS, AND RADIATION
PRESSURE

The two topics on Fabry–Pérot resonators and the properties of Gaussian beams
complement each other because the Gaussian distribution function describes light
beams not only in free space but also inside certain kinds of Fabry–Pérot resonators.

This chapter also covers Bessel beams, which are considered long-range nondiffr-
acting beams, and radiation pressure, which is applied to light tweezers as well as laser
cooling.

3.1 FABRY–PÉROT RESONATORS

Fabry–Pérot resonators selectively transmit or reflect a particular wavelength of light
and are used for various applications, such as spectroscopy, stabilization of laser
oscillation, and interference filters. Along with grating spectroscopy, Michelson inter-
ferometry, and Fourier transform spectroscopy, Fabry–Pérot spectroscopy is one of the
most important means of analyzing a light spectrum.

Suppose that an individual plate is very opaque: let’s say the reflectance R is 99.9%,
and almost no light gets through. If two of these plates are placed precisely parallel
to each other, something unexpected happens. The plates become transparent with
almost nearly 100% transmittance at a particular wavelength, which is determined by
the spacing between the reflecting plates, and at all other wavelengths, the plates will
become even more reflective than before. The reason for this behavior is due to the
large number of multiple reflections of the light inside the resonator. The plates are
assumed to be nonabsorbing and are carefully aligned parallel to each other. The light
bounces back and forth between the plates a large number of times, with only a small
percentage of light being transmitted through the plate at each bounce. The larger
the value of R is, the less light gets through the plate per bounce, and the greater
the number of bounces. The transmitted light from each pass through the resonator
interferes with the transmitted light from other passes. For the special case that the
transmitted components from the multiple passes are in phase, the total amount of
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Magic opaque screen. Opaque screens become transparent where they overlap.

transmitted light through the resonator becomes nearly 100%. This is known as the
resonance condition. For the transmitted components to be in phase, the round-trip
phase difference must be an even multiple of � radians. Wavelengths that satisfy this
condition are called resonant wavelengths.

At resonance, the value of the peak transmittance is always nearly 100% regardless
of the value of R. Although R does not affect the peak transmittance, the value of R
does affect the sharpness of the resonance. The larger the value of R is, the greater the
number of multiple reflections, and the more stringent the in-phase condition becomes.
This phenomenon has made the Fabry–Pérot resonator quite popular as a device for
selecting a particular wavelength of light. Thus, the Fabry–Pérot resonator transmits
or reflects very selectively at particular wavelengths of light.

The most important application of the Fabry–Pérot resonator is as a tool for
analyzing light spectra. It is also used inside gas as well as semiconductor lasers
to host the action of lasing at a specified wavelength or as a component in a circuit
for stabilizing the wavelength of the laser oscillation. Moreover, the principle of the
Fabry–Pérot resonator is applied to designing such devices as an interference filter
that can pick out an extremely narrow spectrum of light or a dichroic mirror whose
optimum transmission and reflection take place at two specified wavelengths.

The Fabry–Pérot resonator is sometimes called the Fabry–Pérot etalon or simply
etalon. By convention, resonators with a fixed spacing between reflectors are
called etalons, and resonators with a variable spacing between reflectors are called
interferometers.

3.1.1 Operating Principle of the Fabry–Pérot Resonator

The basic description of the operating principle of the Fabry–Pérot resonator is given
in this section, followed by a more comprehensive analysis in the next section.

Figure 3.1a shows a schematic of a Fabry–Pérot resonator. It consists of left and
right reflecting plates sandwiching a center medium. For simplicity, each reflecting
plate has refractive index n1, and it is assumed that n1 is larger than the refractive
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Figure 3.1 Principle of the Fabry–Pérot resonator. (a) Geometry of Fabry–Pérot resonator (n1 > n2).
(b) Phasors at resonance. (c) Phasors off resonance.

index n2 of the center medium, namely,

n1 > n2

Light with amplitude E0 is incident from the left to the right and is normal to the
reflecting plates. It is further assumed that the spacing between the reflecting plates
is adjusted to be an integral multiple of a half-wavelength; namely, the Fabry–Pérot
cavity is set at resonance.

The analysis will concentrate on the reflection and transmission at the boundaries
between n1 and n2. The reflection at the interface between the reflecting plate �n1� and
air �n0� is not accounted for. First, consider the incident light undergoing reflection at
the interface of the left reflecting plate and the center medium. The reflection coefficient
r12 from Eq. (2.18) in Chapter 2 is

r12 D n1 � n2

n1 C n2
�3.1�

and r12 is a positive number. The phase of the reflected light E0r12 is designated as 0
radians. Let this first reflected light component be called r0,

r0 D E0r12 �3.2�



FABRY–PÉROT RESONATORS 169

The transmission coefficient at the same boundary from Eq. (2.19) is

t12 D 2n1

n1 C n2
�3.3�

and t12 is also a positive number. The light incident into the center medium from the
left reflecting plate is E0t12, and its phase is designated as 0 radians.

The transmission coefficient t21 transmitting from the center medium into the right
reflecting plate is

t21 D 2n2

n1 C n2
�3.4�

and t21 is a positive number. The light component t0 emergent from the Fabry–Pérot
resonator is

t0 D E0t12t21e
j�2mC1�� �3.5�

where m is an integer and the last factor accounts for the phase associated with trans-
mission across the Fabry–Pérot resonator at the resonance condition, which is an odd
multiple of � radians. Thus, the phase of the first transmitted component t0 is � radians.

Next, the light component that is reflected back by the right reflector toward the left
reflector is considered. The reflection coefficient r21 at the right reflecting plate is

r21 D n2 � n1

n1 C n2
�3.6�

and r21 is a negative number. As a complex number, r21 can be expressed as

r21 D jr21jej� �3.7�

Thus, there is a phase change of � associated with this reflection.
In simple terms, for each one-way trip through the center medium, the light acquires

a phase of �2m C 1�� radians, which is equivalent to � radians. There is also a phase
change of � radians for each reflection occurring when the light in the center medium
hits the reflector boundary, as illustrated in Fig. 3.1a.

The transmitted light t1 is

t1 D E0t12e
j�2mC1��r21e

j�2mC1��r21e
j�2mC1��t21

which reduces to

t1 D E0t12r
2
21t21e

j�

Components of the transmitted light, t0, t1, t2 . . ., all have the same �-radian phase
and add constructively. The transmission through the cavity reaches a maximum at
resonance.

On the other hand, the situation of the components r0, r2, r3, . . . of the light
reflected from the cavity is slightly different. The magnitude of the first reflected
light component, which has never entered the cavity, is E0r12 and is much larger than
all other reflected components. Table 3.1 summarizes the amplitudes of the various
components shown in Fig. 3.1a. The absolute value signs in rij are suppressed.
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Table 3.1 Phase and amplitude of reflected and transmitted components

Reflected Transmitted
Components Phase Amplitude Components Phase Amplitude

r0 0 E0r12 t0 � E0t12t21

r1 � E0t12r21t21 t1 � E0t12r2
21t21

r2 � E0t12r3
21t21 t2 � E0t12r4

21t21

rn � E0t12r
2n�1
21 t21 tn � E0t12r2n

21 t21

The amplitude of the nth component decreases as n increases. The magnitude of
the first reflected light r0 has a phase of 0 radians, while all other smaller components
r1, r2, r3, . . ., which eventually come out of the cavity after multiple reflections inside
the cavity, all have �-radian phase. The largest component and the accumulation of all
the smaller components cancel each other, and the resultant reflected light reduces to a
minimum at the resonance of the cavity. It is a common mistake to forget about r0, and
to incorrectly conclude that the reflection also reaches a maximum at resonance due
to the accumulation of r1, r2, r3, . . .. The phasors at resonance are shown in Fig. 3.1b.

Finally, the case of off resonance is considered. Off resonance, the phase delay
due to the round trip inside the cavity is no longer exactly an integral number of 2�
radians. The components of the signal transmitted through the cavity are no longer in
phase and the phasors representing them curl up as shown in Fig. 3.1c. The magnitude
of the resultant phasors of the transmitted light from the cavity is small.

The phasors of the r1, r2, r3, . . . light components reflected from inside the cavity
also curl up, and the resultant phasor can no longer cancel the large phasor r0 of the first
reflected component that did not enter the cavity. Thus, the reflectance of the cavity
reaches a large value when the cavity is not at resonance, as shown by the phasor R on
the left side of Fig. 3.1c. In short, the transmitted light decreases off resonance while
the reflected light increases.

In the next section, the case when the angle of incidence is not normal to the
reflectors is described.

3.1.2 Transmittance and Reflectance of the Fabry–Pérot Resonator with
an Arbitrary Angle of Incidence

Referring to the geometry of Fig. 3.2, the general expressions for the transmittance
and reflectance of a Fabry–Pérot resonator [1–3] will be derived. These quantities
are obtained by summing an array of light beams produced by multiple reflections
from a pair of reflectors and reaching point P of the focus of a convex lens. Let the
refractive index of the medium of the Fabry–Pérot etalon be n2, the refractive index
of the external medium be n1, and the spacing between the reflectors be d. There is
no reflective film deposited on the etalon, and the reflectors are the discontinuities of
the refractive indices between n1 and n2. The cases for n1 > n2 and n2 > n1 will be
treated concurrently. As a matter of fact, the final results are the same for both cases.
Also, let the angle of incidence from the normal to the reflector surface be �i and the
internal angle inside the reflectors be �. Snell’s law gives the relationship between �
and �i as

n1 sin �i D n2 sin � �3.8�

The emergent angle from the Fabry–Pérot resonator is again �i.
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Figure 3.2 Geometry of a Fabry–Pérot cavity consisting of two parallel reflectors.

First, the optical path difference between the first and second transmitted beams
reaching point P will be calculated. If line CD is perpendicular to both ray t0 and ray
t1, then the optical path for CP is identical to the optical path for DP. In this case, only
the optical path difference between the path from O to D via A, and the path from O
to C via reflections at A and B, need be calculated. This optical path difference creates
a phase difference �:

� D k[n2�OAC ABC BC�� �n2OAC n1AD�] C 2� �3.9�

where k is the free-space propagation constant and 2� accounts for the two phase
reversals associated with reflections at A and B if n1 > n2 is assumed. If n2 > n1 is
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assumed, then 2� disappears. Either way, 2� does not influence the subsequent result.
Removing the common path and noting that AB D BC, � becomes the optical path
difference between ABC and AD

� D k�2n2AB� n1AD� �3.10�

AB D d

cos �

AD D AC sin �i �3.11�

AC D 2d tan � �3.12�

� D k

(
2n2d

cos �
� 2n1d tan � sin �i

)
�3.13�

where � and �i are related by Snell’s law. Equation (3.8) and � finally become

� D 2n2dk cos � �3.14�

Next, the array of transmitted beams will be summed to obtain the resultant of the
light reaching point P through the Fabry–Pérot resonator. The phases of the multiple
reflected beams t1, t2, . . . , tn are always compared to the phase of the first beam t0. In
order to reach P, optical paths C0P and D0P are identical and the phase of t2 at point
C0 is compared to that at D0 on t0. The media outside and inside the resonator will be
denoted by subscripts 1 and 2, respectively. The following notations are used:

E0 Amplitude of the incident light
t12 Amplitude transmission coefficient from medium �1 to �2

t21 Amplitude transmission coefficient from medium �2 to �1

r12 Amplitude reflection coefficient when the light is incident from medium �1

toward medium �2

r21 Amplitude reflection coefficient from medium �2 toward medium �1

ti Amplitude of the transmitted light component after the ith reflection from
the top boundary

ri Amplitude of the reflected light component after the �iC 1�th reflection from
the top boundary

 Phase associated with the optical path length from point O to A
R Reflectance of the reflector, defined as r21r21

T Transmittance of the reflector, defined as t12t21

� Phase difference due to the optical path difference between ABC and AD
given by Eq. (3.13)

The elements of the transmitted beam are

t0 D E0t12e
jt21

t1 D E0t12e
jr21r21e

j�t21

t2 D E0t12e
jr2

21r
2
21e

j2�t21 �3.15�

t3 D E0t12e
jr3

21r
3
21e

j3�t21

tn D E0t12e
jr2n

21 e
jn�t21
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The sum Et of the transmitted light is

Et D E0e
jT�1 C Rej� C R2ej2� C R3ej3� C Ð Ð Ð� �3.16�

where

R D r21r21 �3.17a�

T D t12t21 �3.17b�

Et D E0e
j T

1 � Rej�
�3.18�

If the reflector is lossy and its loss A is defined as

TC RC A D 1 �3.19�

then Eq. (3.18) can be written as

Et D E0e
j 1 � R� A

1 � Rej�
�3.20�

Similarly, the amplitude of the light reflected from the Fabry–Pérot resonator will
now be calculated. The phase of the reflected beam ri is always referred to that of
beam r0. The reflected light components are

r0 D E0r12

r1 D E0t12r21e
j�t21

r2 D E0t12r
3
21e

j2�t21

r3 D E0t12r
5
21e

j3�t21

rn D E0t12r
2n�1
21 ejn�t21

�3.21�

where � is the same as before since

OE D AD �3.22�

The total sum Er of the light reflected toward the source is

Er D E0[r12 C Tr21e
j��1 C r2

21e
j� C r4

21e
j2� C Ð Ð Ð�]

D E0

(
r12 C Tr21ej�

1 � Rej�

)
�3.23�

From Eqs. (3.1) and (3.6) for normal incidence, it is easy to see that

r12 D �r21 �3.24�

which also holds true for either case of n1 > n2 or n2 < n1.
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Equations (3.17a) and (3.24) give

r12 D p
R

r21 D �p
R

}
�3.25�

where r12 is a positive number and r21 is a negative number for n1 > n2, and the signs
are reversed for n1 < n2.

Using Eqs. (3.19), (3.23), and (3.25), the expression for Er is

Er D šE0

p
R

1 � �1 � A�ej�

1 � Rej�
�3.26�

The upper sign is for n1 > n2, and the lower for n1 < n2.
Next, the intensity of the transmitted light It will be calculated from Eq. (3.20)

using the relationship It D EtEŁ
t :

It D E2
0

�1 � R� A�2

�1 � Rej���1 � Re�j��
�3.27�

D I0
�1 � R� A�2

�1 � R�2 C 4R sin2��/2�
�3.28�

Similarly, the intensity of the reflected light is

Ir D I0R
A2 C 4�1 � A� sin2��/2�

�1 � R�2 C 4R sin2��/2�
�3.29�

Equations (3.28) and (3.29) hold true for either n1 > n2 or n1 < n2.
Let’s look more closely at the transmitted power. By dividing both denominator and

numerator by �1 � R�2, Eq. (3.28) can be rewritten as

It D I0

(
1 � A

1 � R

)2 1

1 CM sin2��/2�
�3.30�

where

M D 4R

�1 � R�2
�3.31�

and � is given by Eq. (3.14).
The transmitted power It is periodic with respect to � and every time � approaches

�m D 2m� �3.32�

the value of M sin2��/2� in Eq. (3.30) becomes zero and It reaches a peak value
(resonance). When �m D 2��m C 1

2 �, It reaches a valley (antiresonance). The response
curve is shown in Fig. 3.3. The larger the value of M is, the greater the change of
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Figure 3.3 Transmittance T and reflectance R of the Fabry–Pérot resonator with respect to �.

M sin2��/2� with respect to �, and the sharper the resonance peaks become. For some
applications, such as in a monochromator or a laser cavity, the sharper peaks are more
desirable, whereas broader peaks are more desirable for other applications. In an optical
filter, the bandwidth is manipulated by the value of M.

In monochromator applications, a large value of R is needed, but a sufficient amount
of reflection cannot be realized solely by the difference in the indices of refraction n1

and n2. A thin metal film is deposited on the inner surfaces of the reflector plates in
order to reach the needed value of R. The presence of the metal film can be accounted
for with phase ej , loss A, and the new value of R. In the case of the metal film, the
phase change of Eq. (3.7) between r12 and r21 is no longer � radians but has a phase
of  . The energy lost in the metal film is accounted for by A. With these modifications,
the above analysis holds true for practical purposes.

Important facts about the Fabry–Pérot resonator are that if A D 0, regardless of the
value of R, transmission is 100% at resonance, as seen from Eq. (3.30), and moreover,
the values of �m do not depend on the value of R. These two facts are the very reasons
why the Fabry–Pérot resonator is so useful as a device for spectroscopy.

The results obtained so far have been derived from a scalar field approach, meaning
the direction of the light polarization has not been taken into consideration. As was
shown in the previous chapter, the amplitude and phase of the reflection coefficient
r depend on the direction of polarization. Fortunately, however, the value of �m is
independent of R and the use of the scalar field approach is justifiable.

On the other hand, if the refractive index n2 of the medium inside the Fabry–Pérot
cavity depends on the direction of light polarization (namely, n2 is birefringent), then
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�m is polarization dependent, and the vector field approach has to be used [1]. If the
medium inside the Fabry–Pérot cavity is a Faraday rotator (see Chapter 5), such as
iron garnet, then the multiple reflections taking place inside the Fabry–Pérot resonator
enhance the rotation [4]. The measured result becomes dependent on the state of light
polarization.

As seen from Eq. (3.14), there are several physical means of sweeping the value of
�, such as by changing the (1) spacing d between the reflectors, (2) the internal angle
�, (3) the refractive index of the medium inside the cavity, and (4) the wavelength of
the incident light.

Fabry–Pérot devices are best categorized by the means used for sweeping the value
of �. These categories, in direct correspondence to the above list of sweeping methods,
are (1) the scanning Fabry–Pérot spectrometer, (2) the Fabry–Pérot etalon, (3) the
liquid crystal filter, and (4) the laser frequency stabilizer.

Each of the above will be described in more detail in the following sections.

3.2 THE SCANNING FABRY–PÉROT SPECTROMETER

A scanning Fabry–Pérot spectrometer consists of these basic parts: a scanning Fabry–
Pérot resonator, a voltage generator, a photodetector, and a display scope. A photograph
of a scanning Fabry–Pérot resonator is shown in Fig. 3.4. The resonator has a
piezotransducer (PZT), which is driven by a sawtooth voltage generator. As the mirror
of the resonator is displaced by the PZT, the transmitted light is detected and displayed
on the scope. The block diagram of the scanning Fabry–Pérot spectrometer is shown
in Fig. 3.5.

The scanning Fabry–Pérot resonator consists of one stationary and one movable
plate. The stationary plate is equipped with a parallelism adjustment assembly onto

Alignment
screw

Fixed mirror mount PZT assembly Movable mirror mountSapphire V-block

Figure 3.4 Structure of a scanning Fabry–Pérot resonator. (Courtesy of Burleigh Instruments Inc.)
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Figure 3.5 Block diagram of the scanning Fabry–Pérot spectrometer.

which one of the two mirrors is fastened. The movable plate can be coarsely set
at a distance typically between 50 µm and 15 cm from the stationary plate. A PZT
assembly, which holds the other mirror, is installed on the moving plate. Thus, the
spacing between the mirrors can be coarsely set between 50 µm to 15 cm and the
spacing can be finely scanned for about 2–3 µm by the PZT from the coarsely set
position.

The output from the scanning Fabry–Pérot resonator is detected by either a
photomultiplier or a photodiode and amplified. The amplified output signal is displayed
on an oscilloscope. The output from the sawtooth voltage generator is fed to both the
PZT and the horizontal deflection plate of the oscilloscope. Thus, the light output
from the scanning Fabry–Pérot device is displayed with respect to displacement of the
movable mirror.

The performance of the Fabry–Pérot resonator is characterized quantitatively by two
factors: the finesse and the free spectral range. The finesse relates to the sharpness of the
resonance, and the free spectral range is approximately equal to the separation between
neighboring resonances. This separation can be expressed in terms of wavelength,
frequency, or wavenumber (reciprocal of wavelength).

3.2.1 Scanning by the Reflector Spacing

In the case of normal incidence, � D 0°, into an air-filled Fabry–Pérot cavity with
refractive index n2 D 1, the condition for the mth order resonance is, from Eqs. (3.14)
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and (3.32),

!r
2
m D d �3.33�

The performance of the Fabry–Pérot resonator is controlled by this equation. Figure 3.6
is a plot of Eq. (3.33) and shows the resonance wavelength !r as a function of reflector
spacing with the mode number m as a parameter. Equation (3.33) looks quite simple,
but there are three variables, and interpretation of Fig. 3.6 needs further explanation.
A small section near the origin of Fig. 3.6 has been expanded for detailed illustration
in Fig. 3.7, which is described next.

Referring to Fig. 3.6, the intersections between a horizontal line and the resonance
curves are equally spaced. For example, if a horizontal line is drawn at ! D 0.4 µm, the
intersections are 0.2 µm apart. If a horizontal line is drawn higher on the graph, say, at
1.0 µm, the intersections are still equally spaced but are now 0.5 µm apart. This is why
peaks corresponding to a specific wavelength appear equally spaced in the output display
of a scanning Fabry–Pérot interferometer. The intersections between the vertical line and
the resonance curves are not equally spaced. The spacing between intersections decreases
gradually as the resonance wavelength decreases. In the shorter resonance wavelength
regions, the spacings are approximated as uniform for most practical purposes.
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3.2.1.1 Fabry–Pérot Resonator with a Fixed Resonator Spacing (Etalon)
Figure 3.7a shows the graph with the reflector spacing fixed at d D 2 µm. The
resonance takes place at every mode number. The resonance wavelengths for the first
three mode numbers are !r D 4 µm for m D 1, !r D 2 µm for m D 2, and !r D 1.33 µm
for m D 3. The graph on the left shows the output spectra when light with a continuum
spectrum is incident on the resonator. The light field distribution in the resonator for
each mode number is shown on the right. The mode of the light spectrum from a
Fabry–Pérot cavity-type laser is a good example of this case.

The spacing !r between the resonator wavelengths for a large m is

!r D 2d

m
� 2d

m C 1
� 2d

m2
D !2

2d
�3.34�

3.2.1.2 Monochromatic Incident Light with Scanned Reflector Spacing
Figure 3.7b shows the graphs associated with a single spectrum input light with
wavelength ! D 2.0 µm and angle of incidence �i D 0o. The reflector spacing is swept
from 0 to 3 µm. When the spacing reaches d D 1 µm, the resonance wavelength
!r D 2 µm of the resonator matches the incident light wavelength. The light is
transmitted through the resonator and the first output peak appears. The output is
shown in the bottom graph of Fig. 3.7b. The first peak is associated with the m D 1
mode. As d is swept further, the m D 2 mode resonance wavelength matches that of
the incident light and the second peak appears at d D 2 µm. The same will be repeated
as d is scanned at every !/2 or 1 µm.

At the top of Fig. 3.7b, the light field E inside the Fabry–Pérot resonator is drawn
for each mode. Every time the cavity length reaches an integral multiple of a half-
wavelength, resonance takes place. As a matter of fact, from the interval between the
resonance peaks, the wavelength of the incident light can be determined.

3.2.1.3 Free Spectral Range (FSR)
When the incident light has more than one wavelength, especially when the wave-
lengths are either too far apart or too close to each other, the proper selection of d,
(hence m), becomes important.

Let us take the specific case of an incident light spectrum consisting of a main
peak at ! D 2.0 µm. The wavelength of the auxiliary peak !a D !C! is larger
than the main peak by 20%. The scanning Fabry–Pérot resonator is used to analyze
this compound signal. The response of ! D 2.0 µm alone has already been shown in
Fig. 3.7b. While peaks associated with ! appear at an interval of !/2 as d is scanned,
the peaks associated with !C! appear at a longer interval of �!C!�/2. Two sets
of peaks with different intervals are displayed as d is scanned. The response of both !
and !a is shown at the bottom of Fig. 3.7c as the solid and dashed lines, respectively.
The optimum region of m (or d) for displaying the spectrum will be sought.

From the bottom graph in Fig. 3.7c, the separation of the peak of !a from that of
! becomes larger and larger as m (or d) is increased, and the resolution between the
two spectral lines increases with m (or d). There is, however, a limit on the value of
m (or d). As the value of m exceeds m D 5 or d D 5 µm, the shift of the peak of !a
from that of ! becomes equal to or longer than the regular interval of 1 µm of the
peaks of !. The peak of !a, which belongs to m D 5, overlaps the peak of !, which
belongs to m D 6, and the peaks of ! and !a start to intermingle. The mode pattern
at m D 7 restarts that of m D 1 and goes back to the case of the lowest resolution.
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Figure 3.7 Expanded graph of Fig. 3.6. (a) Continuum spectrum light into a fixed reflector spacing.
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In conclusion, the best choice of m is 4 � m � 5, not only from the viewpoint of the
highest resolution but also avoiding ambiguity.

Next, the question is asked in reverse. What is the maximum spread of the spectrum
that can be determined by a Fabry–Pérot resonator without ambiguity for a given
wavelength, resonator spacing, and scan range?

Let us say d D 3 µm and ! D 2 µm are given. This example calculates the maximum
deviation ! of the wavelength from ! that can be determined by the Fabry–Pérot
resonator.

The order of mode m of the output peak appearing at d D 3 µm is, from Eq. (3.33),

m D 2d

!
D 2�3�

2
D 3

The output peak of the auxiliary wavelength, !C!, shifts from that of the third
order mode of ! toward the fourth order mode of ! as ! is increased. The value !
for which the auxiliary output peak reaches that of the fourth order mode of ! is

m
�!C!�

2
D �m C 1�

!

2
�3.35�

With m D 3, the answer is

! D 0.67 µm

The maximum width of the spectrum that can be determined without ambiguity is
called the free spectral range (FSR). The FSR of the Fabry–Pérot resonator whose
reflector spacing is 3 µm is 0.67 µm at the wavelength ! D 2.0 µm.

From Eqs. (3.33) and (3.35), the value of the FSR for the general case with spacing
d, around the wavelength !, is

!FSR D !2

2d
�3.36�

The FSR decreases with an increase in the reflector spacing.
Next, it will be shown that the free spectral range !FSR is approximately equal to

the spacing between the adjacent resonance wavelengths of a resonator with a fixed
reflector spacing d and operated at !. Referring to Fig. 3.7c, as ! is increased from
zero to !r , the intersection of the horizontal dotted line with da moves from d
to a. Line ab represents the free spectral range !FSR; and line dc represents the
wavelength spacing between the m D 3 and m D 4 resonant wavelengths for a fixed
value of d D 3 µm. From the parallelogram abcd, ab can be approximated as cd.
Thus, the free spectral range is almost equal to the spacing between the resonant
wavelengths for a fixed value of d. This approximation becomes better as m gets
larger.

!FSR � !r �3.37�

It is sometimes useful to express the free spectral range in terms of the light carrier
frequency. In terms of frequency, the free spectral range is

%FSR D c

!
� c

!C!FSR
� c

!2
!FSR �3.38�
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With Eq. (3.36), Eq. (3.38) becomes

%FSR D c

2d
�3.39�

Thus, it should be noted that %FSR is independent of the light frequency. The
appropriate selection of the spacing of the mirrors, which determines the value of
the FSR, is important for operating with the highest resolution, yet without ambiguity.

Example 3.1 Find the spacing d and the mode number of a scanning Fabry–Pérot
spectrum analyzer that can display the spectrum of a superluminescent laser diode
(SLD). The center wavelength of the SLD is 1.540 µm and the width of the spectrum
is š10 nm from the center wavelength.

Solution The free spectral range in wavelength has to be 20 nm and, from Eq. (3.36),

d D �1.54�2

2�0.02�
D 59.3 µm

The mode number of operation is

m D 2d

!
D 2�59.3�

1.54
D 77 �

From the output display of a Fabry–Pérot resonator, such as shown at the bottom
of Fig. 3.7c or in Fig. 3.8 of the next example, the input spectrum is to be determined.
In the output display, the peak associated with !a is located at �d1/d2�!FSR from one
of the main peaks associated with !, as shown at the bottom of Fig. 3.7c:

�!a � !� D d1

d2
!FSR �3.40�

where !FSR is the free spectral range given by Eq. (3.36). In terms of frequency, the
equivalent of Eq. (3.40) is

�% � %a� D d1

d2
%FSR �3.41�

Example 3.2 shows the calculation for a specific case.

Example 3.2 Figure 3.8 shows the display of a scanning Fabry–Pérot resonator when
a helium–neon laser beam is phase modulated by an MNA (2-methyl-4-nitroaniline)
crystal. The wavelength is ! D 0.6328 µm and the mirror spacing is swept around
d D 600 µm.

(a) What is the scan length of the PZT from point a to point b in the display in
Fig. 3.8?

(b) From Fig. 3.8, find the frequency of the phase modulation of the He–Ne laser
light due to the MNA crystal. The phase modulation creates two side lobes
centered at the carrier frequency.
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Figure 3.8 Display of a scanning Fabry–Pérot resonator with d D 600 µm and ! D 0.6328 µm. (After
C. Wah, K. Iizuka, and A. P. Freundorfer [15].) (a) Output on the oscilloscope at a vertical scale of
5 V/div; only the carrier is visible. (b) Output on the oscilloscope at a vertical scale of 10 mV/div; the
first order sidebands appear.

Solution
(a) From the resonance condition

!r
2
m D dm

the scan length between adjacent modes is !/2:

!r
2

D 0.6328

2
D 316 nm

(b) The solution is obtained by referring to Fig. 3.7b and Eq. (3.36). The FSR in
wavelength can be converted into that in frequency using Eq. (3.39):

%FSR D c

2d

%FSR D 3 ð 1014

2�600�
D 250 GHz
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From the display, the ratio of the distance to the side lobe to that of the adjacent
main peak is measured to be 0.38; hence, the frequency of the phase modulation is
250 ð 0.38 D 95 GHz. �

Example 3.3 As shown in Part I of Fig. 3.9, the amplitude of the input spectrum is
of a triangular shape with respect to the wavelength !. This spectrum is observed by
a Fabry–Pérot resonator.

(a) The spacing d between the reflectors is set so that the free spectral range fits
the spectral width of the input light. Draw the amplitude of the spectrum when
the spacing d is swept by !/2.

(b) Draw the display when the spacing of the reflector is expanded to 2d, and d is
swept by !/2.

(c) Draw the display when the spacing of the reflector is reduced to d/2 and d is
swept by !/2.

Solution The mode lines that are inside the !ð �!/2� windows are responsible for
the output. The answers are shown in Part II of Fig. 3.9.

(a) When ! D !FSR, the appropriate output display is obtained.
(b) When ! > !FSR, more than one mode line are inside the !ð �!/2�

window. The output displays overlap and the display becomes ambiguous.
(c) When ! < !FSR, even though the display is correct, the power of resolution

is not the highest.
The lesson to be learned from this example is that when the spectral range of the

input light is not known, it is good practice to start the measurement with a small value
of d (or a large value of !FSR) and gradually increase d for improved resolution until
overlapping output starts to display. �

3.2.2 Scanning by the Angle of Incidence

As seen from Eq. (3.14), as � is increased, � is decreased, and the Fabry–Pérot
resonator can be swept by sweeping �i. Figure 3.10 shows an arrangement for dis-
playing the resonance rings without any moving mechanism. A diffuser is placed
between the source and the Fabry–Pérot resonator. First, the case of monochromatic
incident light will be considered. A diffuser creates wavelets of various incident angles
to the Fabry–Pérot resonator. Among the incident wavelets, only those whose incident
angles match the resonance angles �m, �m�1, �m�2, . . . , �m�i that satisfy Eqs. (3.14) and
(3.32) can transmit through the cavity. All other incident angles are reflected back by
the Fabry–Pérot cavity toward the source.

The resonance condition is not limited to just the wavelets propagating in the x–z
plane; the same condition is satisfied in any plane containing the z axis. The emergent
light forms a series of concentric fringe rings on the screen. From the pattern of the
fringe rings, the spectrum of the source light is analyzed.

Next, the case of multiple spectra is considered. Light of each wavelength forms its
own set of fringe rings, and without the prism, the rings will be superimposed, making
it difficult to decode the fringe rings. A dispersive prism, which is placed between the
Fabry–Pérot resonator and the output screen in Fig. 3.10, disperses the locations of
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Figure 3.10 Fabry–Pérot spectroscopy using a prism to separate the fringe rings.

the fringe rings belonging to the different wavelengths, so as to avoid the overlapping
of the fringe rings.

Example 3.4 Referring to Fig. 3.10, find the radii of the first three maxima of the
fringe rings. The wavelength of the diffused source is 0.6328 µm. The spacing d
between the reflectors of the Fabry–Pérot resonator is 30.13 µm. The refractive index
n2 of the medium in the Fabry–Pérot resonator is 1.05, and the refractive index n0 of
the medium outside the resonator is 1.00. The focal length f of the lens L is 50 mm.

Solution Combining Eqs. (3.14) and (3.32) gives

2n2d cos � D m!

With the given parameters, the order of the fringe ring m at � D 0 is

2�1.05��30.13� D m�0.6328�

m D 100

The angle � for m D 99 is

2�1.05��30.13� cos � D �99��0.6328�

cos � D 99

100
� D 8.11°

In the parallel-plate case, the general Snell’s law of

ni sin �i D constant
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holds true. The angle �i in air can immediately be related to the angle � in the center
medium without dealing with transmission through the plate with index of refraction
n1, namely,

n2 sin � D n0 sin �i

�i D 8.52° for m D 99

Similarly, �i for the next two orders is

�i D 12.06° for m D 98

�i D 14.79° for m D 97

The incident wave to the lens in the x direction is

E D E0e
jkx sin �i

The pattern on the back focal plane is the Fourier transform of the input to the lens
(see Eq. (1.160)):

Ei�xi� D FfEg
fxD

xi
!f

The pattern is cylindrically symmetric, and xi D ri.

E�ri, f� D E0υ

[
1

!

(
ri
f

� sin �i

)]
ri D f sin �i

Thus, the radii for m D 99, 98, 97 are

7.41 mm for m D 99

10.4 mm for m D 98

12.8 mm for m D 97 �

An angle adjustment scheme using a parallel beam incident to an etalon is shown in
the fiber ring laser of Fig. 3.11. The etalon transmits light only at certain wavelengths,
which are determined by the angles of incidence specified by Eqs. (3.14) and (3.32).
The light of a particular wavelength is fed back to the erbium-doped fiber amplifier
(see Chapter 13) and the wavelength of the fiber ring laser can be tuned by rotating
the etalon [5].

3.2.3 Scanning by the Index of Refraction

Extreme fine tuning of the Fabry–Pérot resonator without disturbing the reflector
alignment can be achieved by controlling the refractive index of the medium inside
the Fabry–Pérot resonator. For instance, by increasing the pressure of 100% nitrogen
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Figure 3.11 A tunable fiber ring laser.

gas by 1 atmosphere, the refractive index changes by 0.0003, and fine control of the
refractive index is possible by controlling the pressure of the nitrogen gas.

Another material used is a liquid crystal whose index of refraction can be changed
by an external electric field. The electrooptic effect of the nematic-type liquid crystal
is large and the control voltage is small, typically 1–5 volts. The refractive index can
be controlled by as much as 20% by means of these control voltages.

Figure 3.12 shows a schematic of a liquid crystal fiber filter. A nematic-type
liquid crystal is sandwiched between indium tin oxide (ITO) transparent electrodes

AR coating

Glass
Indium tin oxide (ITO)

Reflector (98.5%)

Nematic-type liquid crystal

10 µm

Fiber

ac Control
voltage

Direction of 
polarization

E

GRIN lens

M

Figure 3.12 Electronically tunable liquid crystal Fabry–Pérot resonator.
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deposited on a glass plate. The reflectors of the Fabry–Pérot cavity are deposited
over each surface of the ITO electrode. The outer surfaces of the glass plates are
antireflection (AR) coated. The whole liquid crystal compartment is connected to GRIN
lenses (graded index lenses whose refractive indices are quadratic with the radius and
function like thin lenses) [6–11].

Such a tunable filter is useful, for instance, for tuning in to a particular wavelength
in a wavelength division multiplexing (WDM) fiber-optic communication system.

Another example of refractive index scanning is found in an electronically tunable
semiconductor laser. When the electrons are injected into the guiding layer of a
semiconductor laser, its index of refraction is reduced due to the plasma effect (see
Section 14.4.3.2) of the electrons. It is decreased as much as 0.35%. A numerical
calculation is given in Example 3.5 and the general description can be found in
Section 14.10.

Example 3.5 Consider a Fabry–Pérot resonator cavity filled with a semiconductor
material with refractive index n, as shown in Fig. 3.13. The spacing between the
reflectors is 63.4 µm and the free spectral range around the wavelength !m D
1.5517 µm is !FSR D 5.42 nm.

(a) Find the value n of the refractive index of the semiconductor material.
(b) Find the value m of the order of the longitudinal mode for !m D 1.5517 µm.
(c) With the above arrangement, if an electric current is injected into the

semiconductor, the refractive index n of the semiconductor will be decreased
due to the plasma effect of the injected current. In this manner, an electronically
tunable Fabry–Pérot device can be fabricated. Estimate the refractive index
change needed to sweep the wavelength of the resonance peaks by 5.42 nm
around ! D 1.5517 µm by this scheme. Assume the same mode is retained before
and after the injection of the current.

n-type

Input beam

Output beam

Guide

Reflector

I

Electron
plasma
n = n(I )

Reflector

Electrode

p-type

Electrode

Figure 3.13 Electronically tunable semiconductor Fabry–Pérot cavity.



190 FABRY–PÉROT RESONATORS, BEAMS, AND RADIATION PRESSURE

Solution
(a) From Eq. (3.36) including the index of refraction n, the free spectral range is

!FSR D !2

2nd

n D !2

2!FSRd

D �1.5517�2

2�5.42 ð 10�3��63.4�

D 3.5

(b) To find the value of m, we use

!m
2
m D nd

m D 2nd

!m
D 2�3.5��63.4�

1.5517
D 286

(c) Let !m be the wavelength of the resonance before injection of the current and
let !0

m be the wavelength after the injection of current.

!m
2
m D nd

!0
m

2
m D n0d

Thus,

n� n0 D
(
!m � !0

m

2d

)
m

D �5.42 ð 10�3��286�

2�63.4�

D 0.0122

In percentage, the change is

n� n0

n
D 0.35% �

3.2.4 Scanning by the Frequency of Incident Light

By scanning the frequency of the incident light, a series of equally spaced resonance
peaks are observed in the output of the Fabry–Pérot resonator at frequencies of

fm D m
c

2nd

This technique has many applications, such as controlling the channel spacing of
wavelength division multiplexing (WDM) in a fiber-optic communication system.
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a fiber-optic communication system. (a) Channel space locking by the reference pulse method.
(b) Optical heterodyne receiver at home.

Figure 3.14a shows a block diagram of such a WDM system used in the transmitting
station of a fiber-optic cable television system. There are 10 separate tunable laser
diodes, which have been tuned to achieve a frequency spacing of 8 GHz between
carrier frequencies. Each laser diode is modulated by its own television camera so that
10 TV channels are sent concurrently in one fiber.
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The principle of operation is as follows. The outputs from the laser diodes are all fed
to the scrambler so that each output fiber from the scrambler transmits the same signal,
which contains 10 different TV channels, to each subscriber at home. Subscribers can
select any of the 10 channels for viewing at home.

In such a system, it is important to tightly maintain the carrier frequency spacing
of 8 GHz so as to avoid crosstalk between the channels. This example demonstrates
the reference pulse method [12], which employs a Fabry–Pérot resonator to lock the
channel spacing. The reference pulse scheme consists of a swept laser diode LDsw,
a coupler, and a Fabry–Pérot (FP) resonator, as shown in the lower right portion of
Fig. 3.14a. The carrier frequency of LDsw is linearly swept with respect to time over
80 GHz. One-half of the output from the swept LDsw is fed to the coupler that leads to
a photodiode mixer followed by a low-pass filter. The output from one of the scrambler
ports is fed to the same coupler. Whenever the frequency of the swept LDsw matches
with that of any one of the channels, an electrical pulse appears at the output of the
low-pass filter. At each sweep of LDsw, a chain of 10 pulses appears.

On the other hand, the other half of the output from LDsw is fed directly to
the Fabry–Pérot resonator. Whenever the swept frequency matches the resonance
frequencies of the resonator, the light will reach the photodiode and an electronic pulse
appears at the output of the photodiode. The spacing between the resonance frequencies
of the Fabry–Pérot resonator is set at 8 GHz. If every pair of pulses from the scrambled
signal and from the Fabry–Pérot resonator is synchronized, the frequencies of all
channels are properly spaced. The frequency controller compares each pair of pulses.
If the pulses of the pair are not synchronized, an error signal is issued to that particular
channel to correct the carrier frequency of the laser diode. With this method, the relative
frequency fluctuation can be maintained within š25 MHz, which is 1.25 ð 10�7 of the
carrier frequency of the transmitter LD. It may be added that this scheme is much more
economical than combining 10 individually frequency-stabilized laser diodes.

Lastly, a word about the scheme of the receiver at the subscriber’s home will
be added. In Fig. 3.14b, an optical heterodyne receiver (see Chapter 13) is used.
The optical heterodyne is essentially a converter from an optical frequency to an
intermediate frequency (IF), which is normally in the radiofrequency range. This
conversion is achieved by mixing with a local oscillator (LO) light. A particular channel
can be selected by tuning the frequency of the tunable local oscillator laser diode.

3.3 RESOLVING POWER OF THE FABRY–PÉROT RESONATOR

This section looks more closely at the problem of resolving two closely spaced spectra.
Although the mode lines in Fig. 3.6 are all drawn without spectral width, in reality,
the output from the Fabry–Pérot resonator does have finite width. The achievable
resolution of the scanning Fabry–Pérot resonator as a spectrum analyzer depends on
the lineshape of the transmitted light.

The resolving power R will be calculated. The expression for the transmitted light
It with respect to the frequency % is given by Eqs. (3.14) and (3.30) as

It D I0
1

1 CM sin2[�2�%/c�d]
�3.42�

where A D 0, n2 D 1, and � D 0. The lineshape of It depends on two factors: one is
M, and the other is 2d/c. The value of M is associated with the reflectance R of the
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reflector through Eq. (3.31), and 2d/c is exactly the inverse of the FSR in frequency,
as given by Eq. (3.39).

Figure 3.15 shows a graph of It as a function of �. Let �š1/2 be the value of � near
the mth order mode for which the intensity drops to half its peak value,

It��š1/2� D 1
2I0 �3.43�

Let � be the full width at half maximum (FWHM) in �. From Eq. (3.32), �š1/2 is
expressed as

�š1/2 D 2m� š �

2
�3.44�

When the denominator of Eq. (3.30) becomes 2, Eq. (3.43) is satisfied. This condition,
in combination with Eq. (3.44), means � must satisfy

1 D M sin2
(

2m� š�/2

2

)

D M

(
sinm� cos

�

4
š cosm� sin

�

4

)2

D M sin2 �

4

For sin��/4� − 1, � is approximated as

� � 4p
M

�3.45�
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Figure 3.15 Resonance curve of the Fabry–Pérot resonator with �. � is the full width at half
maximum (FWHM).
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Using Eq. (3.14) with n2 = 1 and � D 0, � is rewritten in terms of the frequency % as

� D 4�d

c
% �3.46�

Inserting Eq. (3.45) into (3.46), the final result is obtained as

%1/2 D %FSR

F
�3.47�

where

F D �

2

p
M �3.48�

F is called the finesse and is further rewritten with the help of Eq. (3.31) as

F D �

p
R

1 � R
�3.49�

F is sometimes called the reflection finesse Fr to distinguish it from other types
of finesse, as mentioned below. The finesse increases with an increase in R. With
an increase in F, the FWHM %1/2 becomes finer. By rewriting Eq. (3.47) using
Eqs. (3.33) and (3.39), the value of the resolving power Rs, which is defined as

Rs D %

%1/2
or

!

!1/2
�3.50�

is obtained as

Rs D mF �3.51�

Thus, the resolving power Rs of the Fabry–Pérot resonator is the product of m�D 2d/!�
and F, where m can be thought of as the reflector spacing measured in terms of half-
wavelengths, and the finesse F increases with the reflectance R of the reflector. The
resolving power Rs is known as the quality value Q of the cavity in the field of electrical
engineering. In practice, m is typically of the order of 103, F is of the order of 102, and
Rs is of the order of 105. Thus, the scanning Fabry–Pérot resonator has the capability
of determining the wavelength of infrared light with a resolution better than 0.01 nm.

The analysis thus far has been idealized in that factors such as flatness, parallelism,
or finiteness of the reflectors have been ignored. All of these factors decrease the value
of the finesse. Among the neglected factors, the most important factor is the flatness.
The effective finesse Ft is approximated as

1

F2
t

D 1

F2
r

C 1

F2
d

�3.52�

where Fr is the reflection finesse and Fd is the flatness finesse. These finesses are
defined as

Fr D �

p
R

1 � R
�3.53�

Fd D S

2
�3.54�
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where the flatness S of the surface of the reflector is defined as the inverse of the depth
of deviation ds in terms of the wavelength !.

S D 1

ds/!
�3.55�

Example 3.6 The tunable fiber Fabry–Pérot filter [13] shown in Fig. 3.16 is used in
an application that requires a FSR of 30 nm in wavelength and a finesse Ft of 100 at a
wavelength of ! D 1.55 µm. Design the spacing between the fiber ends and the coated
reflectivity. The flatness finesse is Fd D 400.

Solution

!FSR D !2

2nd

With n2 D 1, the spacing is

d D !2

2!FSR
D 1.552

2�0.03�
D 40 µm

From Eq. (3.52), the effective finesse is

1

F2
t

D 1

F2
r

C 1

F2
d

Solving for Fr gives

F2
r D F2

dF
2
t

F2
d � F2

t

With Fd D 400 and Ft D 100, the value of Fr is

Fr D
√
�400�2�100�2

4002 � 1002
D 103.3

Fiber Fiber

Fabry–Pérot resonator

Differential heat
expansion

PZT

PZT

Ferrule

Al

Al

Fiber core coated
with reflectorPTZ voltage

Figure 3.16 Tunable fiber Fabry–Pérot resonator. (After C. M. Miller and F. J. Janniello [13].)
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From Eq. (3.53),

Fr D �
p
R

1 � R

and solving for
p
R gives

p
R D �� š√�2 C 4F2

r

2Fr

D �� š
√
�2 C 4�103.32�

2�103.3�
p
R D 0.985

R D 0.970 �

Example 3.7 A scanning Fabry–Pérot resonator is used to obtain the output shown
in Fig. 3.17, which is the spectrum from an erbium-doped fiber amplifier (EDFA).
Determine the Fabry–Pérot spectrometer’s value of finesse and the spacing d of the
reflectors required to produce such a display. Assume a free spectral range of 110 nm
in order to cover the entire tail of the spontaneous emission spectrum.

Solution The spacing d of the reflectors is found from Eq. (3.36):

d D !2

2!FSR
D 1.552

2�0.11�
D 10.92 µm

1.50

−20

0

20

1.55

Wavelength (µm)

O
pt

ic
al

 p
ow

er
 (

dB
m

)

1.60

Spontaneous
emission

Amplified signal
with linewidth 20 GHz

Figure 3.17 Spectrum of the output from an optical EDFA.
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The mode number from Eq. (3.33) is

m D 2d

!
D 2�10.92�

1.55
D 14

The linewidth of the amplified signal is 20 GHz, and this determines the required
resolving power of the Fabry–Pérot resonator.

The needed resolving power is

Rs D %

%

% D c

!
D 3 ð 1014

1.55
D 1.94 ð 1014 Hz

Rs D 1.94 ð 1014

20 ð 109
D 0.97 ð 104

From Eq. (3.51), the finesse is

F D Rs
m

D 0.97 ð 104

14
D 693 �

Example 3.8 Figure 3.18 shows a schematic of an erbium-doped fiber amplifier
(EDFA). Both the signal light with wavelength !s D 1.554 š 0.020 µm and the pump
light with wavelength !p D 1.480 µm have to be present in the erbium-doped core
of the fiber, and the pump light has to be removed from the amplified light after
the amplification. The Fabry–Pérot dichroic filter whose transmission specification is
shown in Fig. 3.19 is to be designed. It transmits most of !s and is highly reflective
at !p. In all the calculations, assume n2 D 1, � D 45°, and A D 0.

(a) Find the reflector spacing of the Fabry–Pérot resonator.
(b) What is the reflectance R of the reflector if the full width at half maximum

(FWHM) of the signal light is 40 nm?

qi

q = 45°

lp = 1.480 mm

ls=1.554 ± 0.020 mm

Signal + pump

Erbium-doped fiberDichroic filter
added

Removed pump light

Amplified signal light

Dichroic filter
separator

Pump laser diode

Signal light

Figure 3.18 Dichroic filter used for an erbium-doped fiber amplifier (EDFA). Passband !s D
1.554 š 0.020 µm and stopband !p D 1.480 µm.
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0
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1.5541.480

Pump

Signal

Wavelength l (µm)

R
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iv
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in

te
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ity
 I t

0.04

Figure 3.19 Specification of a dichroic filter used for an optical EDFA.

(c) What is the reflectance Ir/I0 of the dichroic filter at the wavelength of the pump
light?

(d) What happens if two of the same filters are staggered? Assume that there are
no multiple reflections between the filters.

Solution
(a) From Eqs. (3.14) and (3.32)

d cos � D m
!

2

At the passband, this condition is

d cos � D m
!s
2

and at the stop band,

d cos � D �m C 0.5�
!p
2

With !s D 1.554 µm, !p D 1.48 µm, and � D 45°, the value of m is

m D 10.0

and the spacing is

d D m!s
2 cos �

D �10��1.554�

2/
p

2
D 10.918 µm
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(b) From Eqs. (3.50) and (3.51), the resolving power is

Rs D !s
!1/2

D mF

1.554

0.04
D 10F

F D 3.89.

From Eq. (3.49),

F D �
p
R

1 � R

R D 0.455

(c) From Eq. (3.29) with A D 0 and sin��/2� D 1, the reflected intensity is

Ir
I0

D 4R

�1 � R�2 C 4R

D 4�0.455�

�1 � 0.455�2 C 4�0.455�
D 0.86

or
It
I0

D 0.14

(d) The maximum transmittance remains unity. The bandwidth of the passband
becomes narrower. The minimum transmittance at the pump light becomes �0.14�2 D
0.02. �

3.4 PRACTICAL ASPECTS OF OPERATING THE FABRY–PÉROT
INTERFEROMETER

This section describes practical techniques for operating the Fabry–Pérot interferometer
in the laboratory.

3.4.1 Methods for Parallel Alignment of the Reflectors

The perpendicularity of mirror M1 with respect to the incident beam can be examined
by placing a card with a pinhole as shown in Fig. 3.20. If the laser beam reflected
from M1 goes through the pinhole, M1 has been adjusted properly.

Mirror M2 can be adjusted by projecting the transmitted beam onto a distant screen.
When the mirror M2 is aligned, the projected beam converges into a single spot.

Next, Figure 3.21 illustrates a method for fine adjusting a large-diameter reflector.
Diffused visible incoherent light is used as the light source. A human eye probes the
parallelism of the reflectors. The angles of the emergent light are discrete, as defined by

cos �m D m
!

2d
�3.56�
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Laser

Card with
a pinhole

Screen

M1
M2

Figure 3.20 A method for aligning the Fabry–Pérot cavity.

Wider

Narrower

Narrower

Diffuser Reflector Reflector

narrower

Wider

S

Figure 3.21 A method for the fine adjustment of a pair of large-diameter Fabry–Pérot reflectors.

which is derived from Eqs. (3.14) and (3.32). The discreteness of the angles is also
explained in Fig. 3.10 and Example 3.4. The human eye’s lens performs the same
function as in Fig. 3.10. When the eye is focused on a far away object, an interference
fringe is formed on the retina of the eye.

According to Eq. (3.56), regions with a wider reflector spacing project the
interference fringe pattern with a narrower period. On the other hand, regions with
a narrower reflector spacing, project patterns with a wider period. Parallelism of the
reflectors is accomplished by scanning the eye across the reflector and adjusting the
tilt of the reflector so that the period of the fringes remains constant.

Next, a method for aligning gas laser mirrors [14] is explained. With gas laser
mirrors, not only the mirror parallelism, but also the perpendicularity of the gas tube
axis to the mirror surface has to be achieved.
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Mirror
Laser tube

Optical
attenuator

Mirror
Fringe

Mirror

Laser tube
Optical
attenuator

Mirror

Fringe

(a)

(b)

Figure 3.22 A method for aligning laser mirrors. (a) The beam is perpendicular to both mirrors but
not collinear to the tube axis. (b) The beam is perpendicular to both mirrors and collinear to the tube
axis.

As shown in Fig. 3.22, an optical attenuator is inserted to control the light intensity
and protect the eyes from inadvertent laser action. Let us assume that the parallelism
of the mirrors has already been established using the previous method, and that
interference fringes are already observable in the emergent light.

Figure 3.22a shows a state where the mirrors are parallel but the mirror surface
is not perpendicular to the axis of the laser tube. The eye is positioned so that
the glow inside the laser tube can be seen cylindrically symmetric. According
to Eq. (3.56), the radii of the interference rings are very small for a long laser
tube. If the mirror surface is not perpendicular to the laser tube, the interference
fringe pattern will be projected onto the observer’s face away from the eye. The
parallelism of the mirrors is readjusted without moving the position of the eye
so that the center of the concentric interference fringe comes to the center of the
eyeball. The observer judges whether or not the interference fringe comes to the
eyeball by looking at the image of his/her own eye reflected from the end mirror
of the laser tube. If the image of the eye is too dark, then the eye is illuminated
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by a lamp. Figure 3.22b shows the geometry of the well-adjusted mirrors and
laser tube.

3.4.2 Method for Determining the Spacing Between the Reflectors

The true spacing between the mirrors can be difficult to measure if the mirrors are
extremely close together or if the mirror surfaces are not readily accessible because of
the support structure. When the mirrors have to be set within a few microns of each
other, utmost care has to be exercised because the mirrors are easily damaged when
they touch each other.

Two methods are suggested here. In one method, the same incident beam is measured
with two different angles, and in the other method, the same incident beam is measured
with two different mirror spacings avoiding the necessity of the absolute measurement
of d. The former is recommended when the mirrors have to be set close to each other
and is explained in this section. The latter is explained in the next section. Measurement
by the different angles technique has been divided into five steps as follows:

1. Using visible light, the parallelism of the mirrors is first adjusted by the method
shown in Fig. 3.21. The visible laser beam and the Fabry–Pérot resonator, whose
mirror spacing is to be measured, are placed about 1 meter apart, as shown in
Fig. 3.23.

2. The entire body of the Fabry–Pérot resonator is tilted such that the back reflected
beam comes about one beam diameter away from the laser aperture. This location
of the spot is designated as point P1.

x2

P1

P2

2qi1

2qi 2

2qi 2 = tan−1

z2

Laser

FP resonator

x2

z2
(   )

Figure 3.23 A method for determining the reflector spacing by shifting the incident angle.
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3. The spacing of the mirrors is adjusted so that the intensity of the spot at P1

changes to a dark spot. The mirror spacing at the mth resonance condition is,
from Eq. (3.14),

4�d cos �1

!
D 2�m �3.57�

where �1 is the internal angle of the laser beam in the Fabry–Pérot resonator
mirror and n2 D 1 is assumed. (�1 can be approximated by the external incident
angle �i1.)

4. The entire body of the Fabry–Pérot resonator is then tilted further. Not only
the location of the spot shifts, but also the intensity of the spot changes, first
increasing to a maximum, then decreasing and becoming dark again. The location
of such a dark spot is noted as P2, which tells us the internal angle �2 of the
next higher order resonance mode and

4�d cos �2

!
D 2��m C 1� �3.58�

5. From these two angles, d can be calculated as

d D !

2�cos �2 � cos �1�
�3.59�

3.4.3 Spectral Measurements Without Absolute Measurement of d

In this section, another method for measuring the spectrum by a scanning Fabry–Pérot
resonator without a knowledge of the absolute value of the spacing of the reflectors
will be explained [15].

Measurements are repeated with the same input light but with two different reflector
spacings, which are translated by a known amount.

Let us assume that the incident light consists of two spectra, a main peak at ! and an
auxiliary peak at !a D !C!. As explained earlier using Fig. 3.7c, the output display
of the scanning Fabry–Pérot resonator would be something like the one shown in the
encircled areas in Fig. 3.24. Figure 3.24a corresponds to a reflector spacing of d D d1

while the spacing in Fig. 3.24b is d D d2. These two displays have sufficient informa-
tion to determine the spectrum, without absolute measurement of the reflector spacing.

The reflector spacing d is electronically scanned using a PZT drive assembly in the
vicinity of d D d1 in Fig. 3.24a and d D d2 in Fig. 3.24b. Referring to Fig. 3.24a, as d
is scanned, the output peaks appear in the following sequence. The �m1�th order mode
of ! appears first, at d D d1, then that of !a appears at d D d1 Cd1, and finally that
of the �m1 C 1�th order mode of ! appears at d D d1 C !/2. These three peaks are
encircled at the bottom of the figure. The expressions describing the locations of these
three peaks are, from Eq. (3.33),

d1 D !

2
m1 �3.60�
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Figure 3.24 Measuring spectrum without absolute measurement of d. Operation of the Fabry–Pérot
resonator (a) near d D d1 and (b) near d D d2.

d1 Cd1 D �!C!�

2
m1 �3.61�

d1 C !

2
D !

2
�m1 C 1� �3.62�

Having recorded the spectra at d D d1, the reflector is now shifted manually
using the adjusting screw on the stationary plate (shown at the left in Fig. 3.5)
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to a new location d D d2. The new output display resulting from this operation is
illustrated in Fig. 3.24b and the expressions describing the new locations of the three
peaks are

d2 D !

2
m2 �3.63�

d2 Cd2 D �!C!�

2
m2 �3.64�

d2 C !

2
D !

2
�m2 C 1� �3.65�

The combination of the two sets of measurements provides the final result. From
Eqs. (3.60) and (3.61), d1 is

d1 D m1
!

2
�3.66�

and from Eqs. (3.63) and (3.64),

d2 D m2
!

2
�3.67�

Equations (3.66) and (3.67) give

d2 �d1 D !

2
�m2 � m1� �3.68�

From Eqs. (3.60) and (3.63), the difference d2 � d1 is

d2 � d1 D !

2
�m2 � m1� �3.69�

From Eqs. (3.68) and (3.69), the final result is

!

!
D d2 �d1

d2 � d1
�3.70�

The denominator on the right-hand side of Eq. (3.70) is the manual shift by the
adjustment screw on the stationary plate, which can be read from the vernier
scale, and the numerator is the amount of electronic sweep by the PZT drive
assembly.

The wavelength ! of the main spectrum is obtained from the period d D !/2 of
repetition of the pattern of the main peaks.

3.5 THE GAUSSIAN BEAM AS A SOLUTION OF THE WAVE EQUATION

In geometrical optics, a straight line represents the propagation direction of the
wavefront. If the lightwave is indeed a plane wave, both the E and H fields have
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to extend to infinity, or if the lightwave is a spherical wave, its wavefront diverges in
all directions. These mathematical expressions, although adequate approximations in
many situations, are not physically realizable. The Gaussian beam is a more realistic
approximation from the viewpoints of both wave and ray optics. The energy of the
Gaussian beam is confined within the vicinity of a straight line.

The wavefront of the Gaussian beam is unique in that it behaves like a plane wave
in the vicinity of the beam waist, but it gradually converts into a spherical wave as
the distance from the waist increases. The beam energy, however, is always confined
within a finite divergence angle. The nature of Gaussian beam propagation in free
space, as well as inside a cavity, will be explored. The treatment of the propagation
in the cavity is especially important because the field inside a Fabry–Pérot resonator
with spherically curved reflectors generally has a Gaussian distribution.

3.5.1 Fundamental Mode

Let the expression for a Gaussian beam be [16]

u D  �x, y, z�ejkz �3.71�

The amplitude function  �x, y, z� can be a complex function. The Gaussian beam has
to satisfy the wave equation:

r2uC k2u D 0 �3.72�

By inserting Eq. (3.71) into (3.72),  �x, y, z� has to satisfy

∂2 

∂x2
C ∂2 

∂y2
C j2k

∂ 

∂z
D 0 �3.73�

where the variation of the amplitude function  with respect to z was assumed slow,
and

∂2 

∂z2
D 0 �3.74�

 can be obtained by solving Eq. (3.73). The function

 D Aej[P�z�Ck�x2Cy2�/2q�z�] �3.75�

is tried as a solution of Eq. (3.73). The factor A is assumed constant. This solution is
called the fundamental mode. The solutions where A is a function of x and y are called
higher order modes and are presented in Section 3.7. The quantity q�z� is a complex
number referred to as the q parameter. The q parameter controls both the phase and
the amplitude distribution in the transversal plane, and it plays an important role in
describing the type of field. Insertion of Eq. (3.75) into (3.73) gives

2k
(
j

q
� ∂P

∂z

)
C
(
k

q

)2 (∂q
∂z

� 1
)
�x2 C y2� D 0 �3.76�
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The condition that Eq. (3.76) has to be satisfied at any point �x, y, z� gives

∂q

∂z
D 1 �3.77�

j

q
D ∂P

∂z
�3.78�

From Eq. (3.77), q satisfies

q�z� D z C c �3.79�

where c is a constant.
Let

q D q0 at z D 0

Equation (3.79) is written as

q�z� D z C q0 �3.80�

Before going further, the nature of the q parameter will be examined. The constant
q0 is expressed explicitly in terms of real and imaginary parts by the real numbers s
and t as

q0 D sC jt �3.81�

q�z� D sC z C jt �3.82�

which leads to

1

q�z�
D 1

R�z�
� j

1

Q�z�
�3.83�

where

1

R�z�
D sC z

�sC z�2 C t2
�3.84�

1

Q�z�
D t

�sC z�2 C t2
�3.85�

 is obtained by inserting Eq. (3.83) into (3.75), and then u is obtained from Eq. (3.71)
as

u D Ae
jP�z� CjkzCjk�x2Cy2�/2R�z�C k�x2Cy2�/2Q�z�︸︷︷︸

Correction
factor

︸ ︷︷ ︸
Parabolic phase

front

︸ ︷︷ ︸
Amplitude

�3.86�
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3.5.2 Properties of the q Parameter

A single complex number 1/q�z� specifies both the phase and amplitude distribution of
the Gaussian beam. The real part specifies the phase and the imaginary part specifies
the amplitude. It is just like  D ˇ C j˛ in the case of a plane wave (see Example 2.5).
Quantities obtainable from q�z� will be summarized.

3.5.2.1 Beam Waist
If the radius of the beam W�z� is defined as the distance r D

√
x2 C y2 from the beam

axis where the light amplitude u decays to e�1 of that on the axis, then from Eq. (3.86)

k
W2�z�

2Q�z�
D �1 �3.87�

and with Eq. (3.85),

W2�z� D �2
�sC z�2 C t2

kt
�3.88�

From Eq. (3.88), the minimum radius exists at the location where z D �s. Thus, the
waist W0 is

W2
0 D �2

t

k
�3.89�

In conclusion, from Eqs. (3.82) and (3.89), the q parameter is related to the waist as

Im q��s� D t D �k
2
W2

0 �3.90�

Thus, the imaginary part of q�z� at z D �s provides the size of the waist.

3.5.2.2 Location of the Waist
As obtained above, the location of the waist is where z D �s. This is the location
where the real part of q�z� given by Eq. (3.82) is zero; that is, where q�z� is a pure
imaginary number.

Re q�z� D 0

q�z� D jt
�3.91�

3.5.2.3 Radius of Curvature of the Wavefront
The radius of curvative R�z� is, from Eq. (3.84),

R�z� D �sC z�

[
1 C

(
t

sC z

)2
]

�3.92�

First, at the location of the waist where z D �s, Eq. (3.92) becomes R�z� D 1.
Hence, at the location of the waist, the wavefront is more like that of a plane wave and
there is no variation in phase in a plane perpendicular to the direction of propagation.
For a large jsC zj, R�z� is approximated as

R�z� D sC z
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and the phase factor in Eq. (3.86) represents a parabolic or, approximately speaking,
a spherical wavefront with a correction factor P�z�. Note that R�z� changes its sign at
the waist where sC z D 0 and

R�z� > 0 for sC z > 0

R�z� < 0 for sC z < 0
�3.93�

In the region of sC z > 0, the wavefront is diverging, while in the region of sC z < 0,
the wavefront is converging. At far distances, R�z� ! 1 and the wavefront starts to
resemble that of a plane wave again.

3.5.3 With the Origin at the Waist

If the origin of the z axis is taken at the location of the waist, the expressions become
simpler. With all of the following analyses, the origin will be taken at the waist unless
otherwise specified.

3.5.3.1 Focal Parameters
If the origin is shifted to the location of the waist, then the new coordinate z0 is

z0 D z C s

The prime in z will be suppressed. The q parameter in the new coordinates is, from
Eqs. (3.82) and (3.90),

q�z� D z � j
k

2
W2

0 �3.94�

From Eqs. (3.88) and (3.89), the beam radius or beamwidth at z is

W2�z� D W2
0

[
1 C

(
2z

kW2
0

)2
]

�3.95�

From Eqs. (3.90) and (3.92), the radius of curvature at z is

R�z� D z


1 C

(
kW2

0

2z

)2

 �3.96�

From Eq. (3.95), the distance z D z0 where the cross-sectional area of the beam
becomes twice as much as that of the waist is

z0 D k

2
W2

0 �3.97�

Such a distance z0 is called the focal beam parameter or the Rayleigh range. It is the
distance where the cross-sectional area inflates to twice that of the waist and indicates
how fast the beam diverges from the waist. The shorter z0 is, the faster the divergence
is; or in other words, the narrower waist diverges faster.
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Inserting Eq. (3.97) into Eqs. (3.95) and (3.96) gives

W2�z� D W2
0

[
1 C

(
z

z0

)2
]

�3.98�

R�z� D z

[
1 C

(
z0
z

)2
]

�3.99�

From Eqs. (3.98) and (3.99), the relationship between W2�z� and R�z� will be
obtained. Equation (3.98) can be rewritten by multiplying by �z0/z�2/�z0/z�2 as

W2�z� D W2
0

[
1 C �z0/z�2

�z0/z�2

]

Inserting Eqs. (3.97) and (3.99) into this equation gives

W2�z� D 4R�z�

k2W2
0

z �3.100�

Equation (3.100) provides the value of W2�z� from the given values of R�z� and z, or
vice versa.

3.5.3.2 Correction Factor
Next, the value of P will be calculated. Inserting Eq. (3.94) into (3.78) gives

∂P

∂z
D �1

�k/2�W2
0�1 C j2z/kW2

0�

The solution of this differential equation is

P D j ln
(

1 C j
2z

kW2
0

)

The argument in the logarithm is expressed in polar form as

P D j ln

√
1 C

(
2z

kW2
0

)2

� � �3.101�

where

� D tan�1 2z

kW2
0

�3.102�

With the help of Eq. (3.95), Eq. (3.101) is rewritten as

ejP D W0

W�z�
e�j� �3.103�
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3.5.4 Gaussian Beam Expressions

Various expressions and parameters associated with the Gaussian beam will be
summarized to facilitate the use of the formulas.

3.5.4.1 Amplitude Distribution
Using Eqs. (3.87) and (3.103), the expression for the amplitude of the Gaussian beam,
Eq. (3.86), is rewritten as

u�z� D A︸︷︷︸
Constant

W0

W�z�︸ ︷︷ ︸
Contraction

ratio

e�j�Cjk�zCr2/2R�z��� r2/W2�z�︸ ︷︷ ︸
Spherical wavefront

︸ ︷︷ ︸
Transverse
amplitude

distribution

�3.104�

where

r2 D x2 C y2

z0 D k

2
W2

0 �3.97�

W2�z� D W2
0

[
1 C

(
z

z0

)2
]

�3.98�

R�z� D z

[
1 C

(
z0
z

)2
]

�3.99�

��z� D tan�1
(

2z

kW2
0

)
�3.102�

The field distribution is illustrated in Fig. 3.25a.
The first factor in Eq. (3.104) is the amplitude and the second factor is the change

in amplitude due to the change in the radius of the beam. The third factor is the
phasefront, which approaches that of a plane wave at the waist as well as in the far
field. For intermediate distances, the phasefront approaches a spherical wavefront with
radius of curvature R�z�, but with a correction factor of �. The last factor represents a
bell-shaped transverse field distribution.

From Eq. (3.104), we see that only three parameters are needed to specify the
Gaussian beam: the size of the beam waist, the distance from the beam waist, and the
wavelength of the light.

3.5.4.2 Intensity Distribution
The intensity distribution I�r, z� is given by uuŁ and from Eq. (3.104) it is

I�r, z� D I0

(
W0

W�z�

)2

e�2r2/W2�z� �3.105�

As shown in Fig. 3.25b, the transverse distribution at a particular value of z is Gaussian.
The longitudinal distribution I�0, z� along the beam axis has its maximum at the
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Figure 3.25 Gaussian beam. (a) Amplitude distribution. (b) Cross-sectional intensity distribution and
beam radius. (c) Intensity distribution along the beam axis.

waist and decays monotonically as [W0/W�z�]2, as shown in Fig. 3.25c. The intensity
distribution of the Gaussian beam is symmetric with respect to the waist. As soon as
the distribution of I�r, z� on one side of the waist is known, that on the other side is
obtained by the mirror image.

3.5.4.3 Angle of the Far-Field Divergence
Equation (3.98) can be rewritten as(

W�z�

W0

)2

� z2

z2
0

D 1
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Thus, the beam radius of the Gaussian beam is a hyperbolic function of z. Referring
to Fig. 3.25a, the beam expansion at a far distance is

lim
z!1 tan � D lim

z!1

(
W�z�

z

)

and from Eqs. (3.97) and (3.98),

lim
z!1 tan � D 2

kW0
�3.106�

The spread is inversely proportional to the size of the waist W0. This is similar to
the spread of the far-field diffraction pattern of a plane wave through an aperture with
radius W0 (see Section 1.2).

3.5.4.4 Depth of Focus
The region of the waist bordered by �z0 < z < z0 is called the depth of focus D0 and,
from Eq. (3.97),

D0 D 2z0 D kW2
0 �3.107�

A smaller spot size means a shorter depth of focus unless the wavelength of the light
is shortened.

Example 3.9 The beamwidth and the radius of curvature of a Gaussian beam with
wavelength ! were measured at a certain location z. They were R1 andW1, respectively.

(a) Find the q parameter.
(b) Find the beamwidth W2 and the radius of curvature R2 at a new location a

distance d away from the measured location.

Solution The unknowns in this problem are the distance z from the point of
observation to the location of the waist and the size W0 of the waist. These unknowns
will be found first.

(a) From Eqs. (3.98) and (3.99)

z D R1

1 C �z0/z�2

W2
0 D W2

1

1 C �z/z0�2

Inserting z from Eq. (3.100) and z0 from Eq. (3.97) into the denominators of these two
equations gives

z D R1

1 C �2R1/kW2
1�

2

W2
0 D W2

1

1 C �kW2
1/2R1�2
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The q parameter is obtained by inserting the above two equations into Eq. (3.94) as

q�z� D z � j
k

2
W2

0

(b) From Eq. (3.79), the q parameter at distance d away is obtained just by adding
d in the real part, and therefore q�z C d� is

q�z C d� D z C d� j
k

2
W2

0

The desired R�z C d� and W�z C d� will be found from q�z C d�:

1

q�z C d�
D 1

R�z C d�
� j

1

Q�z C d�
�3.108a�

1

R�z C d�
D z C d

�z C d�2 C z2
0

�3.108b�

1

Q�z C d�
D �z0
�z C d�2 C z2

0

�3.108c�

where Eqs. (3.89) and (3.97) were used.
From Eq. (3.108b), R�z C d� is obtained as

R�z C d� D �z C d�

[
1 C

(
z0

z C d

)2
]

From Eqs. (3.87) and (3.97) and Eq. (3.108c), W�z C d� is obtained as

W2�z C d� D W2
0

[
1 C

(
z C d

z0

)2
]

It should be noted that the solutions for R�z C d� and W�z C d� are obtained by simply
replacing z with z C d, once the values of z and W0 are found in part (a). �

3.6 TRANSFORMATION OF A GAUSSIAN BEAM BY A LENS

A Gaussian beam propagating in free space cannot have more than one waist (just like
a human being). However, if a lens is introduced into the beam, then it is possible to
form a new beam waist whose location and size are different from the original. Thus,
convex and concave lenses and mirrors are valuable tools for transforming Gaussian
beams into desired dimensions. The transformation of the Gaussian beam by a lens is
the subject of this section.
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3.6.1 Transformation of the q Parameter by a Lens

A thin convex lens with focal length f is placed a distance d0 to the right of the waist
of the incident Gaussian beam as shown in Fig. 3.26. The quantities associated with
the incident beam will be denoted by the subscript 0, and those of the emergent beam
from the lens, by the subscript 1. The radius and phasefront of the emergent light at
an arbitrary distance from the lens, as well as the location and size of the new waist,
will be calculated.

The lens not only converges the phasefront but also changes the radius of the beam.
In other words, the lens changes both R�z� and W�z�, and it is best to deal with the
basic parameter q. Not only the lens but the propagation itself changes the q parameter.
The process of the change in q will be followed. Let the q parameter at the incident
waist be

q D q0 �3.109�

At the waist, q0 is a purely imaginary number and its value is �j�k/2�W2
0 from

Eqs. (3.90) and (3.91); but at other points, q is a complex number. After propagating
a distance d0 to the front surface of the lens, from Eq. (3.80), q becomes

q0
0 D q0 C d0 �3.110�

Inside the lens, the beam acquires a quadratic phase distribution specified by
Eq. (1.139) in Chapter 1, and from Eqs. (1.139) and (3.75) the field immediately after
the lens is

u D Aej[P�d0�Ck�x2Cy2�/2q0
0�jk�x2Cy2�/2f] �3.111�
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f f

q0 q ′1 q1q ′0

0
0′ z ′
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(d0 − f )2 + z0
2

f 2

M 2 =

2z0

θ0

Figure 3.26 Transformation of Gaussian beam by a lens.
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Thus, the q parameter just behind the lens is effectively

1

q0
1

D 1

q0
0

� 1

f
�3.112�

After further propagation by a distance z, the q parameter is

q�z� D q0
1 C z �3.113�

where the origin of the z coordinate of the emergent beam is taken at the location of
the lens (rather than at the waist).

The rule for calculating the q parameter is that the effect of the propagation is just
the addition of the distance, as illustrated in Eqs. (3.110) and (3.113), while the effect
of the lens is the addition of the inverse of q and the inverse of the focal length of the
lens, as illustrated in Eq. (3.112).

Working backward from Eq. (3.113) to (3.110), the q parameter is expressed in
terms of d0, z, and f as

q�z� D d0�f� z�C fz C q0�f� z�

�f� d0�� q0
�3.114�

Insert

q0 D �jk
2
W2

0 D �jz0

into Eq. (3.114) to obtain

q�z� D �z � f�[�d0 � f�2 C z2
0] � f2�d0 � f�� jf2z0

�d0 � f�2 C z2
0

�3.115�

From the real and imaginary parts of q�z�, the size and location of the waist will be
found.

3.6.2 Size of the Waist of the Emergent Beam

The size of the waist of the emergent beam will be found. The analysis makes use
of the fact that the q parameter becomes a pure imaginary number at the waist. As
Eq. (3.89) was obtained, the size of the waist W1 is found from the imaginary part of
Eq. (3.115) at z D d1:

W2
1 D �2

k
Im q�d1�

Inserting Eq. (3.97) into the above equation, the ratio M of the new waist to the old
waist is

M D
(
W1

W0

)
D f√

�d0 � f�2 C �z0�2
�3.116�

The curve for M is plotted in Fig. 3.27a with z0/f as a parameter.
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Figure 3.27 Magnification M of the beam waist and the location �d1/f � 1� of the emergent waist as
a function of the location �d0/f � 1� of the input waist. (a) Magnification of the waist. (b) Location of
the emergent waist.

3.6.3 Location of the Waist of the Emergent Beam

From the condition in Eq. (3.91), the location d1 of the waist is found from the location
where the real part vanishes as

d1 D fC f2�d0 � f�

�d0 � f�2 C z2
0

�3.117�
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Combining Eq. (3.116) with (3.117) gives

d1 � f D M2�d0 � f� �3.118�

Graphs of �d1/f� 1� as a function of �d0/f� 1� are plotted in Fig. 3.27b, again with
z0/f as a parameter. In the negative �d0/f� 1� region, as shown by the dotted line,
there is a virtual image of the waist.

3.6.4 Rayleigh Range of the Emergent Beam

The Rayleigh range z1 of the emergent beam is given by the size of the waist W1 of
the emergent beam and

z1 D k

2
W2

1

From Eqs. (3.97) and (3.116), the Rayleigh range is

z1 D M2z0 �3.119�

The depth of focus D1 of the emergent beam, from Eqs. (3.107) and (3.119), is therefore

D1 D M2D0 �3.120�

Both z0 and D0 increase by a factor of M2.

3.6.5 Angle of the Far-Field Divergence of the Emergent Beam

The angle of the far-field divergence is obtained from

lim
z!1 tan �1 D lim

z!1

(
W1�z�

z � d1

)

For a small angle �1, the following approximation holds:

�1 � 2

kW1
rad

and, hence,

�1 D �0

M
rad �3.121�

3.6.6 Comparison with Ray Optics

In regions far away from the focal depth, the image formed by a Gaussian beam
becomes closer to that formed by ray optics. As �d0 � f� becomes much larger than
z0, the expression for the location of the Gaussian beam waist, Eq. (3.117), approaches

f2 D �d0 � f��d1 � f� �3.122�



TRANSFORMATION OF A GAUSSIAN BEAM BY A LENS 219

f z

Eq.(3.116)

Eq.(3.117)

L

L

f

f

zf

2W1 = 2Wr 1(1 −     )
∆2

2

Disk

d1

b

d0−f
f 2

∆2

2Wr1

d0

d0

2W0

2W0

Figure 3.28 Gaussian beam output waist 2W1 and ray optics image 2Wr1.

which is identical to Gauss’s equation of imagining:

1

f
D 1

d0
C 1

d1
.

As for the magnification, Gauss’s expression for the magnification is

ˇ D f

d0 � f
�3.123�

and Eq. (3.116) also approaches Eq. (3.123) as

 D z0
d0 � f

becomes smaller than unity.
More quantitatively, the case when the input waist is replaced by a circular disk

object is calculated using Gauss’s ray imaging formula and is compared in Fig. 3.28.
The distance d1 of the output waist of the Gaussian beam is shorter than b of the
output disk image by

b� d1 D f2

d0 � f
2

The dimension W1 of the waist given by Eq. (3.116) is smaller than that of the disk
approximately by a factor of �1 �2/2�.

3.6.7 Summary of the Equations of the Transformation by a Lens

Equations describing the transformation are tabulated in Table 3.2. The associated
figures are shown in Figs. 3.26 and 3.27.



220 FABRY–PÉROT RESONATORS, BEAMS, AND RADIATION PRESSURE

Table 3.2 Gaussian beam transformation by a lens

Parameter Input Beam Output Beam Equation Number

Beam waist W0 W10 D MW0 (3.116)

Waist location d0 � f d1 � f D M2�d0 � f� (3.118)

Rayleigh range z0 D k

2
W2

0 z1 D M2z0 D k

2
W2

10 (3.119)

Depth of focus D0 D 2z0 D1 D M2D0 (3.120)

Angle of far-field
divergence

�0 D tan�1

(
2

kW0

)
�1 D �1

M
(3.121)

Magnification 1 M2 D f2

�d0 � f�2 C z2
0

(3.116)

D d1 � f

d0 � f
(3.118)

D ˇ2

1 C2

where

ˇ D f

d0 � f
(3.123)

 D z0

d0 � f

If we shift the origin of the z coordinate from the lens to the emergent beam waist
and name the new coordinate z0, Eqs. (3.98) and (3.99) for the beam radius and the
radius of curvature for the input beam are converted into those for the emergent beam
and expressed as

W2
1�z

0� D W2
10

[
1 C

(
z0

z1

)2
]

R1�z
0� D z0

[
1 C

(
z1
z0

)2
] �3.124�

where W10 is the waist of the emergent beam.

3.6.8 Beam Propagation Factor m2

Focused laser beams with small spot sizes are utilized for such applications as reading
and writing a digital video disk (see Section 2.10.7), laser printer heads, and drilling
holes in a stainless steel sheet. Figure 3.29 shows a configuration for reducing the waist
(spot size) of a laser beam [17]. A large-diameter Gaussian beam waist is incident
onto the surface of a lens as shown in Fig. 3.29. The wavefront is parallel to the lens
surface and the light intensity along the lens surface decays as the edge of the lens
is approached. This bell-shaped distribution contributes to the apodizing effect (see
Section 1.4.2) and no harmful side lobes appear in the focused light spot. The location
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Figure 3.29 Gaussian beam drill spot by a lens. (Input waist is on the surface of the lens).

d1 of the emergent waist is obtained from Eq. (3.117) with d0 D 0.

d1 D f
1

1 C �f/z0�2
�3.125�

The waist appears at a location shorter than the focal length of the lens and the size
of the waist is, from Eq. (3.116),(

W1

W0

)2

D 1

1 C �z0/f�2

When a short focal length lens with z0 >> f is used with Eq. (3.97), the output spot
size diameter 2W1 approximately becomes

2W1 D 4!f

�D
�3.126�

where the input waist 2W0 is chosen as wide as the lens diameter D. Thus, a smaller
laser beam spot is obtained if a shorter wavelength, or a shorter focal length, or a
larger diameter lens is selected.

If a lens with a diameter of D D 4f/� is used, a spot size of one wavelength should
be obtainable. In practice, however, the input laser beam is not a perfect Gaussian beam.
This imperfection has been shown to increase the spot size, and in actual situations,
the spot size becomes m times as large as 2W1, and the Rayleigh range becomes

z00 D m2z0 �3.127�

The factor m2 is called the m2 beam propagation factor and is used for expressing
the quality of the incident laser beam. As a matter of fact, when the incident light is
a quasi-Gaussian beam, approximate values of W1�z0� and R1�z0� in Eq. (3.124) are
calculated by simply replacing z1 by m2z1 [18].

Example 3.10 Write out a sequence of equations (just equations) to transfer the q
parameter through a convex lens followed by a concave lens whose focal lengths are
f1 and f2 and with spacing among the source, lenses, and observation point as shown
in Fig. 3.30.
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S f1 f2

d0 d2d1

q1 − q2

q1 = q0 + d0 q5 = q4 + d2q3 = q2 + d1
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1
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1= − q4

1
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1
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Figure 3.30 Transformation of q parameters; f1 is a positive quantity, and f2 is a negative quantity.

Solution Starting from point S, the sequence of equations for the q parameter is

q D q0

q1 D q0 C d0

1

q2
D 1

q1
� 1

f1

q3 D q2 C d1

1

q4
D 1

q3
� 1

f2
, where f2 is a negative quantity

q5 D q4 C d2 �

Example 3.11 A Gaussian beam with the following parameters is incident onto a
convex lens. Find the location and size of the waist of the emergent beam.

f D 10 cm

d0 D 20 cm

W0 D 0.1 mm

! D 0.63 µm

Solution From Eq. (3.117), the location of the emergent beam waist is calculated as

d1 � f D 1002�200 � 100�

�200 � 100�2 C ��/0.63 ð 10�3�2�0.1�4

D 80 mm

d1 D 18 cm
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Note that the contribution of [�k/2�W2
0]2 is not negligible and, but for this, d1 D 20 cm.

From Eqs. (3.116) and (3.118), the emergent beam waist is

W1 D 0.1

√
8

10
D 0.09 mm �

3.7 HERMITE GAUSSIAN BEAM (HIGHER ORDER MODES)

So far, the value of A in the solution

 D Aej[PCk�x2Cy2�/2q�] �3.75�

was assumed a constant, but this is not the only solution. A more general solution  
will now be obtained by assuming A is a function of x, y, and z [19]. The derivation of
the solution is slightly lengthy, but many interesting tricks are used to find the solution,
and the derivation is well worth following. Let

 D g

(
x

W

)
h

(
y

W

)
 �x, y, z� ej�z� �3.128�

where  �x, y, z� is the solution that has already been obtained with A equal to a
constant, given by Eq. (3.75). A was replaced by g�x/W�h�y/W�ej�z�, where W�z� is
presented here without the argument z. The functions g�x/W� and h�y/W� that enable
Eq. (3.128) to satisfy

∂2

∂x2
C ∂2

∂y2
C j2k

∂

∂z
D 0

will be found.
The partial derivatives of  are

∂2

∂x2
D
(

1

W2
g00h C 2j

kx

Wq
g0h C gh

∂2 

∂x2

)
ej �3.129�

∂2

∂y2
D
(

1

W2
gh00 C 2j

ky

Wq
gh0 C gh

∂2 

∂y2

)
ej �3.130�

j2k
∂

∂z
D
[
j2kx

∂

∂z

(
1

W

)
g0h C j2ky

∂

∂z

(
1

W

)
gh0 

�2gh k
∂

∂z
C j2kgh

∂ 

∂z

]
ej �3.131�

where

g0 D ∂g

∂�x/W�
, h0 D ∂h

∂�y/W�
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The sum of the last terms in Eqs. (3.129), (3.130), and (3.131) are zero because  
itself satisfies Eq. (3.73). The total sum divided by /W2 gives

g00

g
C h00

h
C j2

(
x
g0

g
C y

h0

h

)[
kW

q
C kW2 ∂

∂z

(
1

W

)]
� 2kW2 ∂

∂z
D 0 �3.132�

The factor in the third term can be simplified by noting that

∂

∂z

(
1

W

)
D � 1

W2

∂W

∂z
�3.133�

From Eq. (3.95), ∂W/∂z is

∂W

∂z
D 1

W

4z

�kW0�2
�3.134�

With Eqs. (3.100), (3.133), and (3.134), the last term of the last bracket of
Eq. (3.132) becomes

kW2 ∂

∂z

(
1

W

)
D � kW

R�z�
�3.135�

With Eqs. (3.83), (3.87), and (3.135), the sum inside the last bracket of Eq. (3.132)
becomes a single number j�2/W�. Thus, Eq. (3.132) finally becomes

g00

g
� 4

x

W

g0

g︸ ︷︷ ︸
Function of x

C h00

h
� 4

y

W

h0

h︸ ︷︷ ︸
Function of y

� 2kW2 ∂

∂z︸ ︷︷ ︸
Function of z

D 0 �3.136�

The differential equation, Eq. (3.136), is solved by the method of separation of
variables.

The function of x in Eq. (3.136) is

1

g

d2g�x�

dx2 � 4x
1

g

dg�x�

dx
�3.137�

where

x D x

W

The differential equation of a Hermite polynomial of order n is

∂2Hn

∂x2
� 2x

∂Hn

∂x
C 2nHn�x� D 0 �3.138�

where n is a positive integer.
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Table 3.3 The Hermite polynomials
of the nth order

n Hn�x�

0 1
1 2x
2 4x2 � 2
3 8x3 � 12x

The expressions of Hn�x� are shown in Table 3.3.
We see that g�x� almost satisfies the differential equation of the Hermite polynomial

except that the coefficient is 4 instead of 2 in the first order derivative. Inserting the
change of variables

s D
p

2 x

dg

dx
D

p
2
dg

ds

d2g

dx2 D 2
d2g

ds2

into Eq. (3.137) gives

2

g�s�

(
d2g�s�

ds2
� 2s

dg�s�

ds

)

The coefficient of the first derivative is 2 and fits for the differential equation of the
Hermite polynomial. A similar change of variables is made for y D y/W.

y D y

W

t D
p

2 y

Equation (2.136) now becomes

1

g

(
d2g

ds2
� 2s

dg

ds

)
︸ ︷︷ ︸

�2n

C 1

h

(
d2h

dt2
� 2t

dh

dt

)
︸ ︷︷ ︸

�2m

�kW2 ∂

∂z︸ ︷︷ ︸
2�mCn�

D 0 �3.139�

The first two terms are functions of s only, the second two terms are functions of t only,
and the last term is a function of z only. For Eq. (3.139) to be satisfied everywhere in
space, the functions of x, y, and z have to be independently constant: �2n, �2m, and
2�nC m�.

d2g�s�

ds2
� 2s

dg�s�

ds
C 2ng�s� D 0 �3.140a�
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d2h�t�

dt2
� 2t

dh�t�

dt
C 2mh�t� D 0 �3.140b�

kW2 ∂

∂z
D �2�m C n� �3.140c�

Hence, from Eq. (3.138),

g�s� D Hn

(p
2
x

W

)

h�t� D Hm

(p
2
y

W

)

The value of  is found by inserting Eq. (3.95) into Eq. (3.140c):

∂

∂z
D � 2�nC m�

kW2
0

[
1 C �2z/kW2

0�
2
] �3.141�

and

 D ��nC m� tan�1
(

2z

kW2
0

)
�3.142�

Finally, the expression for a higher order Gaussian beam, which is known as the
Hermite Gaussian beam, is

 D W0

W
Hm

(p
2
x

W

)
Hn

(p
2
y

W

)

exp
{
j

[
k

2q
�x2 C y2�� �m C nC 1� tan�1

(
2z

kW2
0

)]}
�3.143�

Figure 3.31 shows measured mode patterns inside a cavity with concave mirrors.
The TEM00 mode in Fig. 3.31 corresponds to the case when m D n D 0, where
H0�

p
2x/W� D H0�

p
2y/W� D 1 and Eq. (3.143) reduces exactly to the fundamental

mode given by either Eq. (3.75) or (3.104). The cross-section field distribution has its
maximum on the z axis and has a Gaussian distribution, such as shown in Fig. 3.25.

The TEM11 mode uses the first order Hermite polynomials in both the x and y
directions. Using the values in Table 3.3, the front factor of Eq. (3.143) becomes(

W0

W

)(
2
p

2
x

W

)(
2
p

2
y

W

)
D 8W0

W3
xy

Thus, the TEM11 mode is zero at the origin.
As a matter of fact, the mode number corresponds to the number of zero fields in

the transverse plane. Different modes have different field distributions. The operation
of the “light tweezers” mentioned later in this chapter critically depends on the field
distribution; hence, the proper mode configuration is essential to the operation of the
light tweezers.
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TEM30 TEM40 TEM50

TEM60 TEM70 TEM11

Figure 3.31 Measured mode patterns inside a cavity with concave mirrors. (Courtesy of H. Kogelnik
and T. Li [16].)

These different modes have different phase velocities and possess different cavity
resonance frequencies. In order to properly interpret the output from a Fabry–Pérot
resonator, an understanding of the modes is important.

3.8 THE GAUSSIAN BEAM IN A SPHERICAL MIRROR CAVITY

Since around 1960, spherical mirror cavities have been widely used as Fabry–Pérot
interferometers for analyzing the spectrum of light. The sharp frequency dependence
of the transmitted light from the cavity is used to find the frequency spectrum of the
incident light.

Most of the cavities of gas lasers are made of two concave mirrors facing each
other. The actual laser cavities have a gain medium inside the cavity, and the mirrors
are not 100% reflective so that some of the laser energy escapes the laser cavity. The
characteristics of the laser cavity, however, can be well approximated by those in an
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Figure 3.32 Equivalence of the multiple path in a cavity and the path in a lens array with focal length
f D Rc/2.

ideal air-filled cavity with 100% reflecting, infinitely large concave mirrors. Figure 3.32
shows the structure of a cavity with two identical mirrors. At resonance, the phases of
the beam before and after the round trip have to match. This phase match has to take
place not only at the center of the beam but also in the entire plane transverse to the
laser beam. Such a condition can be realized if the q parameters of the beam before and
after the round trip are identical. The resonance condition will be expressed in terms
of the radius of curvature and spacing between the mirrors. The repeated reflections by
a spheroidal mirror with radius of curvature Rc is equivalent to transmission through
an infinite array of lenses with focal length

f D Rc
2

�3.144�

In the present configuration, identical end mirrors are used and the condition after
one-half round trip is sufficient.

Referring to Fig. 3.32, let the q parameter immediately after the lens be q1 and the
q parameter immediately after the next lens be q2. Then the q parameters q1 and q2

satisfy

1

q2
D 1

q1 C d
� 1

f
�3.145�

The resonance condition is

q1 D q2 D q �3.146�
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With Eq. (3.146), Eq. (3.145) becomes

dfC q�q C d�

fq�q C d�
D 0 �3.147�

Setting the numerator in Eq. (3.147) equal to zero, and dividing by fdq2, the result is

1

q2
C 1

qf
C 1

fd
D 0 �3.148�

Thus, the required q parameter is

1

q
D �1

2f
š j

√
1

fd
� 1

4f2
�3.149�

The Cj term in Eq. (3.149) is not physically acceptable, as the field intensity would
grow indefinitely as �x2 C y2� increases. The real and imaginary parts of 1/q represent
1/R and 1/Q as in Eq. (3.83). At resonance, from the real part of Eq. (3.149), the
radius of curvature of the beam just past the lens or just in front of the mirror is 2f.
Using Eq. (3.144),

R D �Rc �3.150�

The imaginary part of Eq. (3.149) provides the size of the beam W1 just in front of
the mirror and is, from Eq. (3.87),

W2
1 D 2Rc

k
p

2Rc/d� 1
�3.151�

Next, let us find the beam waist. Equation (3.100) is the relationship developed taking
the origin at the waist, as shown in Fig. 3.32. Assuming that the radius of the beam
immediately after the lens is the same as that immediately before the lens, W1 is
expressed as

W

(
d

2

)
D W1

The radius of curvature immediately before the lens is the same as that immediately
after the lens except for the sign reversal and, from Eq. (3.150),

R

(
d

2

)
D Rc

Thus, Eq. (3.100) with z D d/2 becomes

W2
1 D 4Rc

k2W2
0

Ð d
2

�3.152�
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Inserting Eq. (3.151) into (3.152) gives

W2
0 D d

k

√
2Rc
d

� 1 �3.153�

Let us interpret the results obtained. Equation (3.150) states that, at resonance, the
radius of curvature of the wave matches the radius of curvature of the end reflector
mirror. In other words, the contour of the constant phase matches the surface of the
concave mirror. According to Eq. (3.151), for W2

1 to be real, there is a range restriction
on d for a given Rc:

0 < d < 2Rc �3.154�

Figure 3.33 shows the field inside a resonant cavity as the spacing d is varied for a
fixed radius of curvature Rc. As the spacing is increased, the beam radius W on the
surface of the end mirrors expands, whereas the size of the waist in the middle shrinks.
As soon as d exceeds 2Rc, the beam is no longer contained inside the cavity. In this
case the cavity becomes unstable, and the resonance no longer exists, as shown in
Fig. 3.33e.

(a) d <  Rc

(b) d = Rc
Confocal

(c) Rc < d < 2 Rc

(d) d = 2 Rc

(e)

Rc

Rc

Rc

Rc

Rc

Rc

Rc

Rc

Rc Rc

O

O

O

O

O

O ′

O ′

O ′

O ′

O ′

d

d > 2Rc

Figure 3.33 Variation of the field distribution inside a cavity with spacing d for a fixed Rc.
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Figure 3.34 Stability diagram. Unstable resonator systems lie in shaded regions. (After H. Kogelnik
and T. Li [16].)

The range of existence of the resonance for various combinations of the radii of
the end mirrors and the spacing between the mirrors has been studied by Kogelnik
and Li [16]. This range is illustrated in Fig. 3.34. The conclusion of the Kogelnik–Li
study gives the range of the stable resonance as

0 < g1g2 < 1 �3.155�

where

g1 D 1 � d

R1

g2 D 1 � d

R2

�3.156�

and where R1 and R2 are the radii of curvature of the end mirrors. In the present case of

R D R1 D R2 D Rc



232 FABRY–PÉROT RESONATORS, BEAMS, AND RADIATION PRESSURE

the cavity becomes unstable when

g1g2 > 1 �3.157�

which is equivalent to d > 2Rc, as given in Fig. 3.33e.

3.9 RESONANCE FREQUENCIES OF THE CAVITY

Excitation of the cavity by nothing but the fundamental mode or longitudinal mode
�m C n D 0� can be achieved only when the incident beam is of the fundamental mode
and when the mirrors are on the same sphere and perfectly aligned, or the radius of
curvature Rc ! 1 as in the case of planar mirrors. It is easier to achieve this condition
when the radius of the beam is narrower. In general, higher order modes �m C n 6D 0�
are expected to be present.

Let us first find the resonance frequency of the fundamental mode in a cavity with
identical end mirrors. Resonance takes place when the phases of the beam before and
after a round trip are in phase.

For a cavity with identical end mirrors, the waist is located in the middle of the
cavity. The phase distribution in the cavity is readily pictured if the origin of Fig. 3.25a
is set in the center of the cavity. The phase of the field at the right end mirror is identical
with that in Fig. 3.25a with z D d/2, where d is the spacing between the mirrors. The
phase correction factor � in Eq. (3.104) or in Eq. (3.143) with m C n D 0 can be found
from Eq. (3.102) with z D d/2.

� D tan�1 d

kW2
0

�3.158�

The value of W2
0 in Eq. (3.158) can readily be obtained from Eq. (3.153), and �

becomes

� D tan�1 1p
2Rc/d� 1

�3.159�

For every distance of d/2, an additional delay of �� exists. The phase delay for one
round trip 2d has to be an integral multiple of 2�. The round-trip phase delay is

2d
2�fp
v

� 4 tan�1 1p
2Rc/d� 1

D 2�p �3.160�

where v is the velocity of light, p is an integer, and the resonance frequency fp is called
the resonance frequency of the pth longitudinal mode. Solving for fp, Eq. (3.160)
becomes

fp D v

2d

(
pC 2

�
tan�1 1p

2Rc/d� 1

)
�3.161�

The frequency spacing f between the pth and (pC 1)th longitudinal mode is

f0 D v

2d
�3.162�

The resonance frequencies are equally spaced, as shown in Fig. 3.35a, and are the
same as those of a planar mirror resonator.
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Figure 3.35 Frequency spectrum of a Fabry–perot interferometer. (a) Planar mirror cavity. (b) General
spherical mirror cavity. (c) Focal cavity. (Foci are on the confronting mirrors.) (d) Confocal cavity. (Foci
of the two mirrors coincide.) (e) Spherical cavity. (Mirrors are on the same sphere.)

Next, the resonance frequencies of the higher order modes �m C n 6D 0� or transverse
modes will be obtained. The additional phase delay  has to be included. From
Eqs. (3.142) with z D d/2 and (3.153), the phase delay  is

 D ��m C n� tan�1 1p
2Rc/d� 1

�3.163�



234 FABRY–PÉROT RESONATORS, BEAMS, AND RADIATION PRESSURE

which is similar to Eq. (3.159) except for �m C n�. The total phase correction factor
at every d/2 is � C , and the equation of the resonance frequency fp,m,n becomes

fp,m,n D v

2d

(
pC 2

�
�m C nC 1� tan�1 1p

2Rc/d� 1

)
�3.164�

The spacing between fp,0,0 and fp,1,0 is

f1 D v

�d
tan�1 1p

2Rc/d� 1
�3.165�

The spacing between fp,1,0 and fp,1,1 is also the same as Eq. (3.165). As long as the
difference �m C n� is unity, the spacing is given by Eq. (3.165) and if �m C n� D 2
the departure from fp becomes twice f1. The spectrum with fp,m,n is shown in
Fig. 3.35b. There is a cluster of higher order mode resonances at the higher frequency
side of each fundamental mode. These higher order modes are disturbing when the
cavity resonator is used as a Fabry–Pérot interferometer. As seen from Eq. (3.165),
the spacing f1 can be widened if a smaller value of Rc is chosen for a fixed d, as
indicated by the dotted lines in Fig. 3.35. In fact, when Rc D d (confocal cavity), f1

in Eq. (3.165) becomes v/4d and

f1 D f0

2
�3.166�

which means that the higher order mode shows up midway between adjacent resonant
frequencies of the fundamental mode. When Rc D d/2, the higher order mode exactly
overlaps the fundamental mode; however, as shown in Fig. 3.34, the focal cavity is on
the edge of the stability condition and is not recommended. Of the cavities shown in
Fig. 3.35, the confocal cavity of Fig. 3.35d is generally the most practical.

3.10 PRACTICAL ASPECTS OF THE FABRY–PÉROT INTERFEROMETER

On the basis of the conclusions reached in the previous section, the practical aspects
of the Fabry–Pérot interferometer will be described.

3.10.1 Plane Mirror Cavity

When the mirror is perfectly flat, Rc D 1 and  in Eq. (3.163) is zero, which means
there is no concern about generating higher order modes. However, when flat mirrors
are used for end mirrors, only a parallel beam can be excited in the cavity. In using
such an interferometer, it is important to assure the parallelism of the mirrors as well
as the perpendicular incidence of the light, otherwise the beam eventually wanders
beyond the edges of the mirrors and the sharpness of the resonance (finesse) is poor.
For instance, if the reflectivity of the mirror is 99.9%, the beam will bounce back and
forth on average 1000 times before leaving the cavity. Unless the mirrors are perfectly
parallel, this large number of bounces cannot successfully be completed. If the angle
of incidence is other than the normal, the spacing between the mirrors is effectively
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changed. This angular dependence is also used to analyze the spectrum but only with
poor finesse.

The spacing between the resonant frequencies (free spectral range, FSR) is increased
as the spacing between the mirrors is reduced, as indicated by Eq. (3.39). The derivative
of f0 with respect to d becomes large for small d, which means the interferometer
is more susceptible to mechanical vibrations and temperature fluctuations. The FSR
should be selected according to the width of the spectrum of the light under test (see
Section 3.2.1.3).

3.10.2 General Spherical Mirror Cavity

Only with a narrow beam and a perfect mirror arrangement can the zeroth order beam
be excited, otherwise the higher order modes are excited, as indicated in Fig. 3.35b. If
higher order modes are present, the interpretation of the spectrum is more difficult.

One way to interpret the generation of the higher order modes or transverse modes
is as follows. A beam of finite size can be thought of as a bundle of narrow beams. The
narrow beam at the center represents the longitudinal mode, and it takes a direct path
across the cavity. For this direct path, the distance for the resonance condition is one
round trip (across the cavity and back). As illustrated in Fig. 3.36, some of the narrow
beams take a zigzag path around the cavity such that it takes several traversals of the
cavity before the beam actually rejoins itself. Upon rejoining, the resonance condition
requires that the rejoined beam be in phase with the original beam. For the zigzag
path, the rejoining distance is greater than the round-trip distance of the longitudinal
mode. If the zigzag path is equivalent to N round trips of the longitudinal mode, then
the spectral separation of the higher order mode is f0/N because it is equivalent to
a cavity N times as long.

Next, the higher order mode patterns are considered. As a matter of fact, the mode
patterns shown earlier in Fig. 3.31 are nothing but standing wave patterns in the
transverse plane generated by off-axis propagating wave components. For instance, the
rays shown in Fig. 3.36c are represented by two component waves whose propagation
vectors are k1 and k2.

The transverse component of k1 is pointing up while that of k2 is pointing down.
These two components pointing in opposite directions set up a standing wave pattern
in the transverse plane.

3.10.3 Focal Cavity

When the length of the cavity becomes the focal length of the mirror,

d D Rc
2

�3.167�

the cavity is called a focal cavity. For the focal cavity, Eq. (3.165) is f1 D v/6d
and f1 is one-third of f0. This can be verified by tracing the beam reflected by
concave mirrors of the cavity. As shown in Fig. 3.36c, after three round trips, the
beam lines up with the original direction and the separation between the higher order
spectra becomes one-third that of the fundamental modes. Every third spectra matches
up with the fundamental, and there are two additional spectra between the fundamental
modes. The tolerance of the incident angle is not as large as for the confocal cavity,
as described next. The focal resonator is also on the borderline of stability.
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Figure 3.36 Various types of spherical mirrors in a Fabry–perot interferometer. (a) Planar mirror.
(b) General. (c) Focal. (d) Confocal.

3.10.4 Confocal Cavity

When the radius of curvature of the spherical mirrors is identical to the spacing between
the mirrors,

Rc D d �3.168�

then such a cavity is called a confocal cavity. For the confocal cavity, Eq. (3.165) is
f1 D v/4d and f1 is one-half of f0. The spacing of the resonances associated
with the transverse mode becomes exactly one-half of that of the longitudinal modes
and the ambiguity due to the transverse mode disappears. This can be explained by
tracing the path of light. As shown in Fig. 3.36d, after two round trips, the path of
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the emergent beam lines up with the direction of the incident beam. This is as if the
resonance took place in a cavity of twice the length, which means half the spectral
separation of the fundamental modes. From the figure, the angle of incidence for the
confocal cavity is far less critical than for the plane mirror cavity. The large tolerance
on the angle of incidence is a definite advantage for the confocal resonator. A variation
on this interferometer is to use end mirrors whose reflectivity on the bottom half of the
mirror is much larger than the top half of the mirror. This allows easier entrance but
higher reflection in the cavity. Such a Fabry–Pérot interferometer has a higher value
of finesse.

3.11 BESSEL BEAMS

The Bessel beam propagates in free space with minimum spread in the transverse
direction over distances of more than several meters. Because of this unusual property,
the beam has been dubbed a diffraction-free beam.

3.11.1 Features of the Bessel Beam

Special features of the Bessel beam are the following:

1. The diameter of the intensity distribution in the transverse plane remains constant
over distances of more than several meters.

2. The intensity decays abruptly at a distance z D zmax.
3. The propagation constant along the beam is less than that of free space, and the

value is adjustable.
4. With an adjustment of the condition of excitation, the nth order beams Jn�˛r�

can also be excited.

The constant-diameter feature is illustrated in Figs. 3.37–3.39. Figure 3.37 shows
the intensity distributions of the Bessel beam in four transverse planes located at z D 0,
z D 2 m, z D 4 m, and z D 5.5 m, where z is the distance along the beam from the
input aperture [20]. The diameter of the main beam remains unchanged at 200 µm over
the entire distance of 5.5 m. Figure 3.38 is a photograph of the intensity distribution
of a Bessel beam in the plane at z D 9.6 m [21] taken with the aid of a projector lens
(see Fig. 3.42). The diameter of the main beam is 200 µm. In Fig. 3.39, the transverse
field distributions of a Gaussian beam (dotted line) and Bessel beam (solid line) are
compared in the following planes: (a) z D 0, (b) z D 10 cm, and (c) z D 1 m. The
Gaussian beam displays diffraction spread as well as a rapid decrease in intensity. In
order for the Gaussian beam intensity to be visible on the graph, the Gaussian curves
(b) and (c) have been magnified 30 times and 2000 times, respectively. In contrast,
there is no discernable change in the Bessel beam [22].

The abrupt decay of the Bessel beam at z D zmax is shown in Fig. 3.40. The field
intensity of the main lobe of the Bessel beam is plotted with respect to the distance
z of propagation. Again, for the sake of comparison, the Bessel beam is represented
by the solid line and the Gaussian beam, by the dotted line. While the Gaussian beam
displays a rapid decay, the Bessel beam maintains its intensity up to z D zmax D 1 m,
oscillating around a certain value with distance.
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Figure 3.37 Intensity distributions for a Bessel beam: (a) z D 0 m, (b) z D 2 m, (c) z D 4 m, and (d)
z D 5.5 m. (After J. Durnin [20].)

Figure 3.38 Photograph of the Bessel beam at 9.6 m from the aperture using the setup shown in
Fig. 3.42c. (Courtesy of R. M. Herman and T. A. Wiggins [21].)
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Figure 3.39 The transverse spread of the Bessel beam (solid line) is compared to that of a Gaussian
beam (dotted line). The spot sizes of both beams are the same at z D 0. The transverse spread
of the Gaussian beam is shown at (a) z D 0, (b) z D 10 cm with 30ð magnification in intensity, and
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same. (After J. Durnin, J. J. Miceli Jr., and J. H. Eberly [22].)

3.11.2 Practical Applications of the Bessel Beam

A number of applications have been considered for incorporating the special features
of the Bessel beam.

3.11.2.1 Precision Optical Measurement
Since the amount of spread during the propagation can be made much smaller
than that of the Gaussian beam, the Bessel beam is useful for precision optical
measurements [23].

Not only J0�˛r� but also Jn�˛r� can be excited. The J1�˛r� beam, which has its
null on the beam axis, may be advantageous for a finer definition in the precision
alignment.

3.11.2.2 Power Transport
Due to the sharp fall-off of the transmission power at a predetermined distance, the
Bessel beam might be useful as a means of power transport.

3.11.2.3 Nonlinear Optics
Bessel beams have been used for nonlinear optics experiments in long liquid cells of
carbon disulfide, CS2, or acetone, (CH3)2CO [24–26]. The beam provides not only a
long interaction length but also confined high-intensity light, both of which are essential
in nonlinear optics experiments.

An additional advantage of the Bessel beam is easy adjustability of the propagation
constant, which is often needed for optimizing the nonlinear interaction [26].

3.11.3 One-Dimensional Model

The one-dimensional model in Figs. 3.41a and 3.14b will be used to explain how the
Bessel beam is generated. The z axis is taken in the beam direction and the x and
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Figure 3.40 (a) Calculated on-axis intensity of the Bessel beam (solid line) and Gaussian beam
(dotted line) with respect to the propagation distance z. (b) The corresponding measured results for
the Bessel beam. (After J. Durnin, J. J. Miceli, Jr., and J. H. Eberly [22].)

y axes are in the plane transverse to the beam direction. Two delta function sources
υ�x � a� and υ�x C a� are placed in the front focal plane of a convex lens L, at x D a
and x D �a. Since the sources are in the front focal plane, the light emerging from
the lens is in the form of two parallel beams B1 and B2 with angles of inclination
� D š tan�1�a/f�, where f is the focal length of the lens. The resultant field E�x, z�
is expressed as

E�x, z� D A�ej�ˇzC˛x� C ej�ˇz�˛x��

D 2A cos˛xejˇz �3.169�

where

ˇ D k cos � �3.170�

˛ D k sin � �3.171�
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As far as the field distribution in the x–z plane is concerned, the resultant field creates
a cosinusoidal standing wave pattern in the x direction and a traveling wave in the z
direction.

Let this wave be called the cosine beam. The spacing  between the standing wave
peaks is

 D !

2 sin �
�3.172�

This one-dimensional model (cosine beam) displays almost all features of the Bessel
beam mentioned above.

1. The wave propagates while maintaining the same cosine transverse pattern
2A cos˛x.

2. The beam abruptly ends at

zmax D R tan�1 � D R
f

a
�3.173�

where the crossover of the two beams ends. Since the radius R of the lens is
finite, zmax is always finite.

3. The propagation constant along the beam (z axis) is less than that of free space
and can be adjusted by means of �.

4. By placing a �-radian phase shifter in front of one of the delta function sources,
the cosine beam can be converted into a sine beam.

Next, in order to generate the Bessel beam, the two delta function sources are
replaced by a delta function ring source, υ�r � a�. For now, the ring source is divided
into paired sections, A1, A2; B1, B2; C1, C2; D1, D2; and so on, as shown in Fig. 3.41c.
The points A2, B2, C2, D2, . . . are located diagonally opposite to A1, B1, C1, D1, . . .,
respectively.

Sections A1 and A2 generate exactly the same pattern as the cosine beam mentioned
above. Sections B1 and B2 do the same but in a plane tilted from the x–z plane. The
contributions of all the sections of the ring source are superimposed. Superposition,
however, has to be performed taking the phase into consideration.

The distances to all subsections are the same as long as the point of observation
is on the z axis, and in this case, the contributions of the subsections are all added
in phase. As soon as the point of observation moves away from the z axis, phase
mismatch occurs among the contributions of the subsections of the ring source. Thus,
the field intensity reaches its maximum on the z axis and decays in a rippling fashion
with distance away from the z axis.

Approximately, the field distribution in the transverse plane is a Bessel function and
the beam is expressed as

E�z, r� D Aej�ˇz�ωt�J0�˛r� �3.174�

where ˛ is given by Eq. (3.171).

3.11.4 Mathematical Expressions for the Bessel Beam

Mathematical expressions for the Bessel beam will be developed using the geometry
with the delta function ring source in Fig. 3.41d [27].
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First, an expression is sought for the input field Einc�r� to the convex lens. This
expression will be used later for calculating the Bessel beam field distribution. Einc�r�
is calculated using the Fresnel approximation of the Fresnel–Kirchhoff diffraction
formula, Eq. (1.38). The Fourier transform Eq. (1.66) in cylindrical coordinates is used.

Einc�r� D 1

j!f
ejk�fCr2/2f�2�

∫ 1

0
υ�r0 � a�ejk�r

2
0/2f�J0�2�Ar0�r0 dr0

∣∣∣∣
ADr/f!

�3.175�

where r0 and r are radial coordinates in the planes of the ring source and the lens L,
respectively.

The term ejk�r
2
0/2f� is a part of the point spread function in cylindrical coordinates

and corresponds to Eq. (1.40) of rectangular coordinates. The result of the integration
from Eq. (1.102) with dx dy D r dr d� is

Einc�r� D Aejk�r
2/2f�J0

(
k
a

f
r

)
�3.176�

where

A D k

jf
ejk�fCa2/2f� �3.177�

Thus, Einc�r� on the front surface of the convex lens is the zero order Bessel function
of the first kind combined with a quadratic phase factor ejk�r

2/2f�. This quadratic phase
factor is removed by passing through the convex lens whose transmittance is e�jk�r2/2f�

as given by Eq. (1.139). The field on the output surface from the convex lens is
AJ0�k�a/f�r�.

The Fresnel approximation of the field E�ri, z� emergent from the convex lens is
obtained again by the Fresnel–Kirchhoff integral as

E�ri, z� D A0
∫ R

0
J0

(
k
a

f
r

)
ejk�r

2/2z�J0�2�Ar�r dr

∣∣∣∣
ADri/!z

�3.178�

A0 D A
k

jz
ejk�zCr

2
i /2z� �3.179�

where ri is the radial coordinate of the point of observation at a distance z away from
the lens L.

The expression for the on-axis field distribution �ri D A D 0� along the z axis is
much simpler than Eq. (3.178).

By putting

ri D A D 0

q D k

j2z

˛ D k
a

f

x D p
qr

�3.180�
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Eq. (3.178) is simplified to

E�0, z� D A0

2q

∫ p
qR

0
2xJ0

(
˛p
q
x

)
e�x2

dx �3.181�

The Bessel integral formula is available [28] for Eq. (3.181).

∫ a

0
2xJ0� x�e

�x2
dx D



e� 2/4 �

1∑
nD0

(� 
2a

)n
Jn� a�e

�a2
for

∣∣∣∣2a 
∣∣∣∣ < 1

1∑
nD0

(
2a

 

)n
Jn� a�e

�a2
for

∣∣∣∣2a 
∣∣∣∣ > 1

�3.182�

By comparing Eq. (3.181) with Eq. (3.182) and by putting

a D p
qR

 D ˛p
q

�3.183�

the expression for E�0, z� becomes

E�0, z� D A0

2q



e�˛2/4q �

1∑
nD0

( �˛
2qR

)n
Jn�˛R�e

�qR2
for

∣∣∣∣ ˛2qR

∣∣∣∣ > 1

1∑
nD0

(
2qR

˛

)n
Jn�˛R�e

�qR2
for

∣∣∣∣ ˛2qR

∣∣∣∣ < 1

�3.184�

Various factors appearing in Eq. (3.184) will be rewritten.
From Eqs. (3.179) and (3.180) and ri D 0, the factor A0/2q becomes

A0

2q
D Aejkz �3.185�

From Eq. (3.180), the factor ˛/2qR is rewritten as

˛

2qR
D j

za

Rf

From Eq. (3.173), this factor becomes

˛

2qR
D jz

zmax
�3.186�
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Thus, inserting Eqs. (3.185) and (3.186) into Eq. (3.184) gives

E�0, z� D Aejkz



e�j�˛2/2k�z �

1∑
nD0

(
jz

zmax

)n
Jn�˛R�e

jk�R2/2z� for z > zmax

1∑
nD0

(
zmax

jz

)n
Jn�˛R�e

jk�R2/2z� for z < zmax

�3.187�

Calculation of Eq. (3.187) produces curves such as the one shown in Fig. 3.40a.
The calculation of the integral of Eq. (3.178) for the off-axis field distribution

is more involved and can be found in Ref. 27. Calculated results with various
combinations of physical parameters are shown in the same reference.

3.11.5 Methods of Generating Bessel Beams

In order to explain the principle governing the generation of the Bessel beam, a
delta function ring source was used in Fig. 3.41 but such a source is inefficient and
impractical. Figure 3.42 summarizes more practical methods. The method shown in
Fig. 3.42a employs a conical lens [22] whose thickness is linearly reduced as the rim
of the lens is approached.

The conical lens generates two parallel beams crossing each other. The pattern
shown in Fig. 3.42a corresponds to the field pattern in the x–y plane, but the field
patterns in any plane that includes the optical axis are the same as shown in the figure.
The conical lens generates the Bessel beam. The region of focus is a line from point
F1 to F2 on the optical axis. This type of conical lens forms a line image rather than
point image and it is sometimes called an axicon, meaning the axis image [29].

Despite the simplicity and high power output, the arrangement with an axicon alone
has the disadvantage that the region of the Bessel beam starts immediately behind the
axicon. Usually, a certain distance is required from the source to the beginning of the
measuring device, as, for example, when the Bessel beam is used for triangulation [23].

The convex projector lens L in Figs. 3.42a relocates the region of the Bessel beam.
The region is transformed from the input region F1 –F2 to the output region F0

1 � F0
2.

The role of the projector lens is to form the output image F0
n from the input point Fn.

In Fig. 3.42b, positive and negative axicons are combined to transfer the Bessel
beam further away from the axicon. The input axicon is a negative axicon and diverges
the beam, while the second axicon is a positive axicon and converges the beam. As
shown in Fig. 3.42b, there is a hatched dark region in the center of the output axicon
so that the two beams meet at a smaller angle and transfer the Bessel beam further
away from the output axicon. This combination of a positive with a negative axicon
is called a teleaxicon [23].

In Fig. 3.42c, the conical lenses in Fig. 3.42b are replaced by ordinary spherical
lenses [21]. The hatched dark region in the center is created by an opaque disk. The
resulting beam pattern is quite similar to that from Fig. 3.42b.

In order for the Bessel beam to be created, the region has to be illuminated by
nothing but the tilted beams B1 and B2. If the opaque disk is not installed in the center,
a third beam propagating parallel to the z axis will be present, in addition to B1 and
B2, and the Bessel beam will be disturbed.
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A holographic approach to generating a Bessel beam is illustrated in Fig. 3.42d [30].
The Bessel beam is generated by simply illuminating a computer-generated hologram
by a parallel laser beam.

Instead of computer-generated holograms, an actual hologram fabricated directly
from a Bessel beam [31] can be used. Figure 3.42e shows an arrangement for the
fabrication of such a hologram. The laser beam is split into object and reference waves
by means of a half-mirror HM. Each wave is spatially filtered and expanded by a
combination of two lenses and a pinhole: L1, P1, L2 for the object wave and L3, P2,
L4 for the reference wave.

The object wave is converted into a Bessel beam by means of the delta function
annular slit placed in the front focal plane of lens L5. The photographic plate H is
placed in the region F1 –F2 of the Bessel beam. The off-axis reference wave is added
to the photographic plate. After the exposure, the plate is developed. Bleaching after
development increases the diffraction efficiency of the hologram.

Concave lens

(c)

Aperture Convex lens L with
annular aperture

Bessel beam

F1 F2
B1

B2F

(a)

Bessel beam

Bessel beamAxicon

F2Fn
F ′n F ′2

F ′1F1

Projector lens L

Central dark region

Negative axicon

(b)

Positive axicon

Bessel beam

F1 F2

Figure 3.42 Various methods for generating Bessel beams. (a) By means of an axicon and a projector
lens. (b) By means of a teleaxicon. (c) By means of a spherical convex lens with an annular iris. (d) By
means of a holographic plate. (e) Fabrication of a Bessel beam hologram. (f) By means of ˇ-beam
reflector telescope. (After T. Aruga et al. [32].)
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The Bessel beam is immediately generated by illuminating this hologram with the
reconstruction beam that is the reference beam used for fabrication. The advantage of
the holographic Bessel beam is that neither an annular slit nor a convex lens is needed
to reconstruct the Bessel beam.

Figure 3.42f shows a reflector-type arrangement [32] for generating a Bessel beam.
The surface of the main or auxiliary reflector of the telescope is deformed from
the paraboloid so that tilted beams B1 and B2 are generated. The reflector type is
advantageous over the lens or holographic type when a large-diameter device is needed
for higher sensitivity.
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Example 3.12 For the Bessel beam geometry shown in Fig. 3.43, derive expressions
for (a) the range F1 –F2 and (b) the diameter of the main lobe using Eq. (3.174).

Solution Figure 3.43 shows a cross section of the x–z plane of the axicon. In order
to find the propagation direction � of beam B1, the phase � of a plane wave starting
from point S to point P is calculated using wave optics as

� D knx tanC k�z � x tan� �3.188�

where n is the refractive index of the axicon. The expression for the constant phase �0

is obtained by setting � D �0. The vector s of the propagation constant is the gradient
of the constant phase line r�0, and

s D Oi[k�n� 1� tan] C Okk �3.189�

where Oi and Ok are unit vectors in the x and z directions, respectively. Thus, the direction
of propagation � of beam B1 is

tan � D �n� 1� tan �3.190�

(a) From the geometry, the focal range F1F2 is

F1F2 � R

�n� 1� tan
�3.191�

where R is the radius of the axicon.
(b) ˛ in Eq. (3.180) is the x component of the propagation constant and is, from

Eq. (3.189),

˛ D k�N� 1� tan �3.192�
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Figure 3.43 Geometry for generating a Bessel beam by means of an axicon lens.
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Figure 3.44 Expanded view of the axicon.

J0�˛r� has its first zero at ˛r D 2.4 and the diameter d of the main lobe is

d D 2.4!

��N� 1� tan
�3.193�

It should be pointed out that the same answer is obtained using geometrical optics. An
enlarged section is shown in Fig. 3.44. Snell’s law gives

n sin D sin0

� D 0 �

When  − 1, � is approximated as

� � �n� 1� �3.194�

which matches with the approximation of Eq. (3.190) when  − 1. �

3.12 MANIPULATION WITH LIGHT BEAMS

In 1619 Johannes Kepler (1571–1630) introduced the concept of radiation pressure
to explain why comets’ tails are always trailing away from the sun. More recently,
the radiation pressure [33,34] of a laser beam has been utilized for trapping micron-
sized dielectric spheres. These trapping devices are more commonly known as “optical
tweezers.” Radiation pressure also has been used for quieting down the random motion
of atoms and molecules, a technique known as laser cooling. Even though both optical
tweezers and laser cooling use the force generated by the changes in the momuntum
of the laser beam, the mechanisms of the interaction between the object and the laser
beam are different.

3.12.1 Radiation Pressure of Laser Light

Each photon has quantum energy of

E D h% �3.195�
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and momentum of

p D h

!
�3.196�

where h is the Planck’s constant and is h D 6.6 ð 10�34 JÐs. Thus, the total number of
photons in light with energy W is

N D W

h%
�3.197�

The momentum Pm D Np is, from Eqs. (3.196) and (3.197),

Pm D W

h%
Ð h
!

D n1W

c
�3.198�

where n1 is the index of refraction of the medium.
The force is the time derivative of the momentum, and the force in a medium of

index of refraction n1 is

F D n1P/c �3.199�

where P is the incident light power in watts. The magnitude of the force is not large, but
for a particle of a small mass like an atom or molecule, it is significant. The acceleration
of a 1-µm-diameter sphere by the radiation pressure force [33,34] calculated from
Eq. (3.199) is over 105 times larger than that of gravitation [35].

Next, the force generated by a laser beam transmitted through a sphere will be
calculated, referring to Fig. 3.45.

It is assumed that not only the surface reflection is negligible, but also the sphere
is perfectly transparent and no heat effect is involved. The refractive index of the
dielectric sphere is assumed larger than that of the surrounding medium.

Let vector a represent the momentum of the incident light and a0, that of the
emergent light. The momentum ca transferred to the sphere is obtained from the law
of conservation of momentum:

a D a0 C ca �3.200�
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a′

Fa
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0

a

a

n1

n0 

n0 < n1

a = a +ca

Figure 3.45 The direction of the force on the sphere is known from the conservation of momentum
of the laser beam.
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The difference ca between a and a0 provides the direction of the force Fa acting on
the sphere by the transmitted laser beam. Fa is parallel to ca.

3.12.2 Optical Tweezers

A TEM00 mode Gaussian beam is incident onto a large NA value convex lens. The
dielectric sphere to be manipulated is placed near the focus f of the lens. Figure 3.46a
shows the case when the sphere is displaced above the focus of the lens. (The lens
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Figure 3.46 Restoring forces from the axial displacements of a dielectric sphere: n0 D 1.0, n1 D 1.5.
(a) Displacement above the trap focus f. (b) Displacement below the trap focus f. (After A. Ashkin [35].)
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Figure 3.47 Restoring forces from the transverse displacement of a dielectric sphere:
(a) Displacement to the left of the trap focus f. (b) Displacement to the right of the trap focus f.
(After A. Ashkin [35].)
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is above the sphere and is not shown.) Lines a and b are representative component
beams from the converging lens. From the difference between the vectors a and a0, Fa
of beam a is found, and similarly from vectors b and b0, Fb of beam b is found. The
direction of the resultant vector

F D Fa C Fb �3.201�

is the direction of the force. The direction of F is downward or, in other words, in the
direction of restoring the axial displacement.

In the same way, Fig. 3.46b shows the case when the sphere is displaced below the
focus f. The resultant force F points up and restores the displacement.

The same is repeated in Figs. 3.47a and 3.47b to show the restoring force for the
transversally displaced sphere. Figures 3.46 and 3.47 confirm stable operation as an
optical tweezer.

Next, the TEM00 and TEM11 Gaussian modes are compared to see which makes
a better optical tweezer. The beam components with a larger apex angle generate a
larger trapping force.

The TEM11 Gaussian mode beam is more efficient than the TEM00 Gaussian mode
for trapping the sphere, because as shown in Fig. 3.31 the TEM11 mode has a null
intensity in the center and the light intensity is more concentrated at the larger apex
angles where a larger trapping force is generated.

The optical tweezers provide a high degree of control over the dynamics of small
particles and play an important role in physical and biological sciences, especially
in manipulating living cells. Figure 3.48 shows the sequence of a DNA molecule
being pulled through a polymer solution with the use of an optical tweezer. The DNA
molecule is seen to relax along a path defined by its contour [36].

Figure 3.48 DNA molecule being pulled by optical tweezers. The first image in the upper left shows
a stained DNA molecule pulled into the shape of the letter R with the optical tweezers. The remaining
images (read left to right, top to bottom) show the relaxation of the DNA molecule along its contour.
(Courtesy of Steven Chu [36].)
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3.13 LASER COOLING OF ATOMS

The random movement of an atom can be slowed down by means of the radiation
pressure of a laser beam tuned to an atomic resonance. Such a technique is known as
laser cooling [37,38]. Because of the minuteness of the target, the laser beam gener-
ally passes through the atoms without being disturbed, and no momentum of the laser
beam is transferred to the atom. The situation, however, becomes quite different when
the frequency of the illuminating laser beam is tuned to the resonance frequency %0

of an atomic transition. The transition energy is expressed in terms of the resonance
frequency as

h%0 D E1 � E0 �3.202�

where E0 is the energy level of the ground state of the atom and E1 is that of the next
higher energy level. At the resonant frequency %0, the scattering cross section markedly
increases.Ł The focused laser beam is almost entirely absorbed by the atoms in its path
and the laser beam momentum is efficiently transferred to the atoms.

Each time an atom in the ground state absorbs a photon, it makes a transition to the
excited state and at the same time it is pushed by the radiation pressure of the photon.
The change in the velocity of the motion of the atom due to one push is

vc D h

!m
�3.203�

where m is the mass of the pushed atom and h/! is the momentum of the photon.
Once the atom makes a transition to the excited state, the atom no longer interacts

with the laser beam until the atom returns to the ground state. The atom returns to
the ground state by reradiating a photon with energy h%0 by spontaneous emission.
The direction of the reradiation is statistically random and the net contribution of the
recoils is zero. The atom that returned to the ground state is ready to absorb another
photon, and the process continues.

For a typical atom, the spontaneous emission lifetime is 10�8 second, which means
the repetition of the absorption–emission process takes place 108 times a second.

Another important aspect of the mechanism of laser cooling is the differential
absorption of the photon energy associated with the Doppler shift. The laser frequency
%l is set lower than the resonance frequency %0 of the atom with an offset frequency
v/!, where the v is the velocity of the atom. When the atom is moving toward the laser
source, the atom sees a frequency higher than the laser frequency due to the Doppler
shift, and with this offset frequency, the atom sees exactly the resonance frequency.
The interaction is high. On the other hand, when the atom is moving away from the
laser source, the atom sees a frequency lower than the laser frequency due to the
Doppler shift. This atom sees a frequency further away from the resonance frequency,
and the interaction is low. The differential absorption generates a net force resisting
the movement of the atom.

As the atom is cooled down the velocity reduces and the frequency of the laser source
has to be raised accordingly (frequency chirp) in order to maintain optimum interaction

Ł At the resonance frequency, the scattering cross section reaches a value of approximately !2. Off resonance,
the value of the scattering cross section is almost zero.
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Atom
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If the atom is moving toward 
the laser, the laser beam frequency n0
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both momentum and energy
are transferred to the atom. Hence,
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But if the atom is moving away
from the laser less interaction
takes place. Directional
preference of the push is
achieved by the 
Doppler effect.
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there is no interaction
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the ground state.
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because the spontaneous
emission is omnidirectional.

v
l

h
ll

h
l0

nc = h
ll

1
m

Figure 3.49 Laser cooling cycle.

with the laser beam. This method is called Doppler cooling in order to distinguish it
from another method of cooling called polarization gradient cooling [36]. For the atoms
whose velocities are reduced by this process, laser cooling quiets down the motion of
the atoms to almost complete rest. Figure 3.49 summarizes the laser cooling cycle.

It should be pointed out that the quantum lost from an atom due to spontaneous
emission is h%0 while that of the laser source is h%l. Since %0 is larger than %l, the lost
energy is larger than the supplied energy to the atom. The difference accounts for the
cooling of the atom.

Laser cooling has made a significant impact on high resolution spectroscopy and
frequency standards like atomic clocks [39].

PROBLEMS

3.1 What happens to the pattern on the screen in Fig. 3.10, when the lens L and
prism are removed? Assume that the incident light is monochromatic. Draw the
patterns in the x–z plane when the screen is very near, moderately far, and very
far from the Fabry–Pérot resonator.
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Figure P3.2 Measured peaks using a scanning Fabry–perot resonator.

3.2 With the method described in Section 3.4.3, when d is scanned, the same peak
pattern repeats at every half-wavelength of the incident light, as shown in
Fig. P3.2. Theoretically speaking, ! and !a can be determined individually,
by measuring

! D 2�d3 � d1�

!a D 2�d4 � d2�

What is the disadvantage of such a method as far as !/! is concerned?

3.3 The modulation frequency of a He–Ne laser beam was measured by the
method explained in Section 3.4.3. The He–Ne wavelength is ! D 0.6328 µm.
Determine the frequency of modulation from the following measured quantities:

d1 D 0.0829 µm

d2 D 0.1441 µm

d1 � d2 D 300 µm

3.4 Figure P3.4 shows the display of a scanning Fabry–Pérot resonator when phase
modulated light is incident onto the resonator. The mirror spacing is 420 µm.

d
0.1 µm

0.42 µm

Figure P3.4 The display of the scanning Fabry–perot resonator used to find !.
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(a) What is the carrier wavelength !?
(b) What is the mode number m of the resonance?
(c) What is the modulation frequency %?

3.5 The fringe rings of a Fabry–Pérot spectroscope are shown in Fig. P3.5. Using
the key dimensions in the figure, find the wavelength ! of the incident wave.

3.6 It is believed that the gravitational wave causes ground strain when it arrives
from extragalactic sources. A 300-m long Fabry–Pérot cavity such as shown
in Fig. P3.6 was built [40] to detect the ground strain. What is the resolution

5.29 mm

FP

Ground
glass

f = 50 mm60 µm

n2 =1.05

Figure P3.5 Fringe rings of the Fabry–perot spectroscope used to find !.

Figure P3.6 The 300-m Fabry–perot cavity of the TAMA gravitational wave detector. (Courtesy of
A. Araya et al. [40].)



258 FABRY–PÉROT RESONATORS, BEAMS, AND RADIATION PRESSURE

W0 = 0.1 mm

12.5 cm
10 cm

l = 0.63 µm

F

Figure P3.7 Geometry of a Gaussian beam.

L/L of such a detection system, where L is the length of the cavity and L
is the strain for which the output intensity of the cavity drops to one-half of
the resonance value. The wavelength of the laser is ! D 1064 nm. The length
of the cavity is 300 m. The finesse of the cavity is F D 516.

3.7 Using the graphs in Fig. 3.27, obtain M, d1, W1, z1, and �1 for the case shown
in Fig. P3.7.

3.8 A free-space optical communication link is to be established between two
satellites. The distance between the satellites is 3.6 ð 103 km

(a) A beam waist of 1 m on the receiver satellite is desired. A 10-m focal
length lens is installed on the transmitter satellite, and the light wavelength
is 0.63 µm, as shown in Fig. P3.8a. What are the size and location of the
waist of the launching beam?

Transmitter
Diverging beam

Receiver 

1 m

1 m

W0?
Waist

W0?

Transmitter

Transmitter
satellite

Receiver
satellite

F

Waist Waist W1
l = 0.63 µm

(b)

(a)

3.6 × 103  km

3.6 × 103  km

f = 10 m

d0

Figure P3.8 Inter satellite free-space optical communication. (a) Waist of the beam is on the receiver
side. (b) Waist of the beam is on the transmitter side.
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d

Concave mirror Planar mirror

Figure P3.9 Combination of a concave mirror and a planar mirror.

(b) Assume this time that the beam waist is located at the surface of the
transmitting satellite, as shown in Fig. P3.8b. The Gaussian beam expands
to a radius of 1 m at the surface of the receiving satellite. Estimate the size
of the beam waist launched from the transmitting satellite.

3.9 A cavity is constructed with a concave mirror with radius of curvature Rc and
a plane mirror spaced by a distance d, as shown in Fig. P3.9. Find the radii of
the beam on the end mirrors.

3.10 A combination of an annular slit and a convex lens, as shown in Fig. 3.41d, is
used to generate a Bessel beam with the following characteristics. The size of
the main lobe, which is defined in terms of the dimension A from the center to
the first zero of the main lobe, is

A D 60 µm

The maximum beam distance is

zmax D 1 m

The radius of the annular slit is 2.5 mm. The wavelength is 0.63 µm. Find the
focal length and radius of the convex lens.

3.11 In 1873 Sir William Crooks (1832–1919) proposed that a radiometer, such as the
one shown in Fig. P3.11, could measure radiation pressure. Which way should
it rotate if it is indeed measuring the radiation pressure?

3.12 An experiment is conducted to demonstrate radiation pressure by showing how
much a reflective sphere is pushed by a laser beam (see Fig. P3.12) [35]. The
radius of the sphere is equal to the wavelength of the laser beam and its density
is 1 g/cm3.

An argon ion laser with an output light power of 1 watt, and with ! D
0.5145 µm is used. Assume that only 7% of the available force is used for
pushing the reflective sphere.



260 FABRY–PÉROT RESONATORS, BEAMS, AND RADIATION PRESSURE

Black

White

Figure P3.11 Is it a radiometer or a radiation pressure gauge?

1watt

Laser beam

l = 0.5145 µm dv
dt

n1 = 1.43

Figure P3.12 Radiation pressure experiment.

(a) How much is the radiation pressure force acting on the sphere?
(b) What is the acceleration that this sphere acquires due to the pushing force

of the laser beam?
(c) Compare the acceleration by radiation pressure with that by gravity.

3.13 A convex lens is used to focus a parallel light beam. What is the direction of
the radiation pressure acting on the convex lens?
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4

PROPAGATION OF LIGHT IN
ANISOTROPIC CRYSTALS

Electrooptic materials change their indices of refraction when an external field is
applied. These materials have many applications and are used in integrated optic
devices such as phase or amplitude modulators, optical switches, optical couplers,
optical deflectors, and harmonic frequency generators. They are extremely important
materials in integrated optics. Both electrooptic and acoustooptic media, however, are
generally anisotropic and the optical properties in one direction are different from those
in other directions.

The manner of light propagation in anisotropic media is more complicated than
propagation in isotropic media. A good understanding of how light propagates in elec-
trooptic materials is essential in order to avoid undesirable effects or to take advantage
of special properties to build more sophisticated devices.

With the right approach, the analysis is not all that complicated. A good starting
point is to allow for the fact that only two types of waves exist in the medium. The first
type follows the usual laws of propagation and does not create new problems. However,
the second wave does not necessarily propagate in the expected direction perpendicular
to the wavefront, and herein lies the challenge. Added to this challenge is the fact that
the index of refraction varies with the direction of propagation. Fortunately, the two
types of waves are easily identifiable by the direction of polarization. Moreover, the
two waves can be treated separately, one at a time, and the two results can be added
to obtain the final result.

This chapter and the next are twin chapters. They can almost be considered as one
chapter. Chapter 4 is devoted to the manner of propagation in a crystal for a given set
of anisotropy parameters, while Chapter 5 looks at what kind of external control field
is needed to change the anisotropy parameters so as to achieve the desired manner of
light propagation.

Chapter 4 starts with a brief explanation of the meaning of polarization in a
crystal and the qualitative difference between propagation in isotropic and anisotropic
media. Then, differences are derived quantitatively using the wave equation. There are
two popular methods of obtaining a graphical solution to the wave equation — the
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wavevector method and the indicatrix method. Each of these is explained. Using
both graphical and analytical methods, the laws of refraction across the boundary
between two anisotropic media are examined. As a practical application, in Chapter 6
various optical elements are described that manipulate the state of polarization of
the light. These optical elements are used to construct devices such as polarizers,
quarter-waveplates, and half-waveplates.

4.1 POLARIZATION IN CRYSTALS

Solids can broadly be classified as either crystalline or amorphous. Crystalline solids
are characterized by a regular periodic sequence of the building block molecules.
Amorphous solids such as glass or plastic have an irregular molecular arrangement.
Optical, electrical, or mechanical properties of the crystalline solids are generally
direction sensitive because of the anisotropy.

Figure 4.1a is a two-dimensional model of a crystalline solid. Coulomb’s forces
acting between the nucleus and the electrons, or among the electrons themselves, are
stably balanced within the constraint of overall electrical neutrality and minimum energy.
When an external electric field is applied to the crystal by placing the crystal between two
capacitor plates, the entire electron pattern is translated toward the positive electrode,
as indicated in Fig. 4.1b. The translation of the electron cloud creates a positive excess
charge layer on the top surface of the crystal, and a negative charge layer at the bottom
surface. These surface charges establish an additional electric field in the crystal. Such
a phenomenon is called polarization of the crystal due to the external field [1].

The switch of the battery in Fig. 4.1b is first turned on so as to charge up the
capacitor plates with free electrons. The switch remains open so that the surface density
of the free electrons on the plate remains fixed. Then, the crystal is inserted. The fields
before and after the insertion of the crystal are compared to determine the degree of
polarization of the crystal.

As shown in Fig. 4.1c, the direction of the field established by the polarization is
opposite to that of the field due to the original charges on the electrode, resulting in a
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Figure 4.1 Change in the electric field E in the capacitor. First, the air-filled capacitor is charged by
the battery and then the switch is left open during the experiment. The E field is measured before and
after the insertion of the crystal.
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reduction of the electric field between the capacitor plates. The field strength is reduced
to ��1

r of the original field.
If the same crystal is rotated by 90° in the plane of the page, �r will be different

for anisotropic crystalline structures. Chemists use polarization information to study
molecular structure.

There are basically three different mechanisms for inducing polarization: (1) atomic
polarization, (2) orientation polarization, and (3) space-charge polarization. These are
illustrated in Fig. 4.2.

A typical example of atomic polarization is the polarization associated with a
hydrogen atom shown in Fig. 4.2a. Without the external electric field, the nucleus
is surrounded by a spherically symmetric electron cloud and the “center of gravity” of
the negative charges coincides with that of the positive charges and no dipole moment
exists. When, however, an external electric field is applied, both the nucleus and the
electron cloud shift away from each other along the direction of the external electric
field and the centers of gravity of the positive and negative charges no longer coincide.
A dipole moment is created, resulting in the polarization.

Some molecules posses a permanent dipole moment, which is already present even
before the external electric field is applied. A good example of this kind of molecule is
the water molecule. The atoms of the water molecule are arranged in a triangular shape,
as shown in Fig. 4.2b. The “center of gravity” of the positive charges of the three nuclei
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Figure 4.2 Mechanisms of polarization. (a) Atomic polarization. (b) Orientation polarization.
(c) Space-charge polarization.
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would be somewhere inside the triangle. The location of the center of the three electron
clouds (two belonging to the hydrogen atoms and one belonging to the oxygen atom)
will be at the same location as the center of gravity of the nuclei, provided the electron
clouds are perfectly spherically symmetric. However, in reality, this symmetry is broken
by the binding process. When a molecular bond is formed, electrons are displaced
toward the stronger binding atom. In the water molecule, oxygen is the stronger binding
atom, so that electrons are displaced toward the oxygen atom. In a water molecule, the
centers of gravity of the positive and negative charges no longer coincide, and a dipole
moment exists even without an external electric field. Ironically, this permanent dipole
moment is 103 –104 times larger than that of the atomic dipole moment of a hydrogen
atom under an external electric field of 3 ð 104 V/cm, which is the maximum external
electric field that can be applied without causing electrical arcing [2].

Both atomic and orientation polarizations are produced by the displacement or
reorientation of the bound charges. The space-charge polarization shown in Fig. 4.2(c),
however, is produced by the buildup of traveling charge carriers within a specific
volume or on the surface at an interface.

Note in Fig. 4.1 that the direction of the electric field P/�0 due to the polarization
is opposite to that of D/�0. The resultant field E including the contribution from the
original charge on the electrodes is

E D D
ε0

� P
ε0

�4.1�

Hence,

D D �0E C P �4.2�

In the linear range of polarization and in an isotropic medium, P is proportional to
E and

P D �0�E �4.3�

where � is the electric susceptibility. Inserting Eq. (4.3) into (4.2) gives

D D �0n
2E �4.4�

where

�r D n2 D �1 C �� �4.5�Ł

4.2 SUSCEPTIBILITY OF AN ANISOTROPIC CRYSTAL

The susceptibility � of an anisotropic crystal varies according to the direction. For an
anisotropic crystal, � in Eq. (4.3) has to be replaced by a general form of susceptibility
tensor defined as 

 Px

Py

Pz


 D �0


�11 �12 �13

�21 �22 �23

�31 �32 �33




Ex

Ey

Ez


 �4.6�

Ł �r of water is known to be 81. Does this mean n D 9? It is important that �r and n are measured at
the same frequency. �r D 81, however, is the value measured at 114 MHz and n D 9 is not applicable at
optical frequencies.
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The values of the tensor elements depend on the choice of coordinates with respect
to the crystal axis. In general, it is possible to choose the coordinates so that $� becomes
a diagonal matrix [2–4].

If the new coordinates are chosen in the directions parallel to the eigenvectors, the
susceptibility tensor converts into a much more manageable form. This form is

$� D

�0

11 0 0
0 �0

22 0
0 0 �0

33


 �4.7�

where �0
ii are called the principal susceptibilities. The coordinate axes for which the

susceptibility tensor is reduced to diagonal form are called the principal axes. The
corresponding index of refraction tensor becomes

D D �0


n2

˛ 0 0
0 n2

ˇ 0

0 0 n2
�


E �4.8�

where n˛, nˇ, and n� are called the principal refractive indices. Crystals with two
identical principal indices are called uniaxial crystals, and those with three different
principal indices are called biaxial crystals.

Analysis with biaxial crystals is significantly more complicated than with uniaxial
crystals. Since most of the optically transparent crystals that are used for electrooptic
devices are uniaxial, this chapter will concentrate on uniaxial crystals.

With a uniaxial crystal it is always possible to find an axis of rotational symmetry
and such an axis is called the optic axis of the crystal. Sometimes it is casually called
the crystal axis or simply the c axis. Uniaxial crystals have only one optic axis (taken
as the z axis in this chapter), while biaxial crystals have two optic axes.

With the uniaxial crystal,

n˛ D nˇ D no

n� D ne

�4.9�

Equation (4.8) becomes 
Dx

Dy

Dz


 D �0


n2

o 0 0
0 n2

o 0
0 0 n2

e




Ex

Ey

Ez


 �4.10�

Solving for Ex, Ey , and Ez leads to

�0


Ex

Ey

Ez


 D




1

n2
o

0 0

0
1

n2
o

0

0 0
1

n2
e




Dx

Dy

Dz


 �4.11�

If ne > no, the birefringence is called positive birefringence, and if ne < no, it is called
negative birefringence.
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4.3 THE WAVE EQUATION IN AN ANISOTROPIC MEDIUM

The propagation of a lightwave in an anisotropic medium will be analyzed [5,6].
Maxwell’s equations for isotropic and anisotropic media are quite similar. The only
difference is that the dielectric constant is a tensor

$
�r in the anisotropic case, whereas

it is a scalar in the isotropic case. Maxwell’s equations are

W× H D �jωD �4.12�

W× E D jω�H �4.13�

where

D D �0
$
�rE �4.14�

W · D D � �4.15�

and where � is the free-charge density. The curl operation in Eq. (4.13) with the use
of Eq. (4.12) immediately leads to

W× W× E D ω2�D �4.16�

Equation (4.16) is essentially a wave equation and is one of the most basic expressions
governing propagation in any kind of media. It will be used often in this chapter to
deal with anisotropy. Sometimes, a simple recast of Eq. (4.16) provides an answer.

In this entire chapter, the analysis is restricted to plane waves. The plane wave
implies that the sole temporal and spatial dependency in E and H is a factor
expressed by

e�jωtCjk Ð r �4.17�

where

k D kx î C ky ĵ C kzk̂ �4.18�

is the propagation vector.
With the assumption of Eq. (4.17), (∂/∂x, ∂/∂y, ∂/∂z) in the curl operation becomes

�jkx, jky, jkz� and the curl operation is simply

W× E D jk × E �4.19�

Then, Eqs. (4.12) and (4.13) become

k × H D �ωD �4.20�

k × E D ω�H �4.21�

Equation (4.20) specifies that D is perpendicular to H, and Eq. (4.21) specifies that E
is also perpendicular to H. Thus, both E and D have to be perpendicular to H. As
shown in Fig. 4.3, both E and D are in the same plane but this does not necessarily
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H

s

E

Aha!
DEks
plane !

D
k

k × E

−k ×( k × E)

0

Figure 4.3 Orientations of k, E, k × E, H, −k × .k × E/, and D.

mean that E and D are parallel. Equation (4.21) also specifies that k is perpendicular
to H; thus, E, D, and k are all in the same plane. Equations (4.20) and (4.21) lead to

�k × �k × E� D ω2�D �4.22�

In short, we can make the following observations: (1) D, E, and k are in the same
plane, which is perpendicular to H and (2) D is perpendicular to k.

Multiplying both sides of Eq. (4.22) by �0 and using Eq. (4.11) gives

�k ×


k ×


$

1

n2


D


 D k2

0D �4.23�

Equation (4.23) is called the generalized wave equation.

4.4 SOLVING THE GENERALIZED WAVE EQUATION IN UNIAXIAL
CRYSTALS

It will be shown that, in an anisotropic medium, only two waves are allowed to
propagate. These waves are the ordinary wave, or o-wave, and the extraordinary wave,
or e-wave. The existence of these two waves, and only these two waves, is the most
important fact about propagation in anisotropic media.
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4.4.1 Graphical Derivation of the Condition of Propagation in a
Uniaxial Crystal

If the optic axis of the unaxial crystal is taken along the z direction, the medium is
cylindrically symmetric with respect to the z axis. In this case, it is always possible to
choose coordinates such that ky D 0,

k D

 kx

0

kz


 �4.24�

meaning that k is in the x–z plane.
D, which is in the plane perpendicular to k, is represented as

D D

Dx

Dy

Dz


 �4.25�

Only certain directions of the vector D within this plane will satisfy Eq. (4.23). A short
proof follows. Let the vector T represent the left-hand side of Eq. (4.23).

T D �k ×


k ×


$

1

n2


D


 �4.26�

In order for D to satisfy the wave equation, T must point in the same direction as D,
which is the right-hand side of Eq. (4.23).

Referring to Fig. 4.4a, let us start with an arbitrary vector D except that it is in a
plane perpendicular to k satisfying Eq. (4.20). The first operation of Eq. (4.26) is that

D0 D

$

1

n2


D �4.27�

D D

D′ D′k

x

k k

x x0 0 0k × D′

k × D′

D =D′

k × D′

y
y y

T= −k × (k × D′)
−k × (k × D′) −k × (k × D′)

z z z

(a)   D in an arbitrary direction (b)   o-wave
−k × (k × D') parallel to D

(c)   e-wave
−k × (k × D′) parallel to D

Figure 4.4 Vector diagram for explaining that only o-waves and e-waves exist in an anisotropic
medium.
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By poking stick-like objects, such as chop sticks, knitting needles, or skewers, into a potato you can
make your own study kit.

where D0 is a quantity proportional to E from Eq. (4.11). With the hypothetical
example of


$

1

n2


 D 1

n2
o


 1 0 0

0 1 0

0 0 1
10




D0 is expressed as

D0 D 1

n2
o


 1 0 0

0 1 0

0 0 1
10




Dx

Dy

Dz


 D 1

n2
o




Dx

Dy

1
10Dz


 �4.28�

Note that Dz in this example has been reduced to one-tenth of its original value.
Next, vector k × D0 is in a plane perpendicular to k. Finally, vector T in Eq. (4.26)

is drawn. T is also in a plane perpendicular to k. Thus, D, k × D0, and T are all in
the same plane perpendicular to k. In this plane, even though T is perpendicular to
k × D0, D is not necessarily perpendicular to k × D0; thus, T and D are not necessarily
in the same direction, and Eq. (4.23) is not satisfied in general. There are, however,
two particular directions of D for which T and D point in the same direction to
satisfy Eq. (4.23). The waves corresponding to these two particular directions of D
are the ordinary wave (o-wave) and the extraordinary wave (e-wave). In the o-wave,
D is polarized in the direction perpendicular to both k and the optic axis, namely,
in the y direction and in the e-wave, D is polarized in the plane defined by k
and the optic axis z, namely, in the x–z plane as shown in Figs. 4.4b and 4.4c,
respectively.
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We will now further explain how the o- and e-waves satisfy Eq. (4.23). First, with
the o-wave, the operations of Eq. (4.26) are performed as shown in Fig. 4.4b. Since D
is polarized in the y direction, Eq. (4.25) becomes

D D

 0

Dy

0


 �4.29�

The operation of

D0 D

$

1

n2


D �4.30�

does not change the direction of D, and both D and D0 point in the same direction.
Next, the vector k × D0 is in the x–z plane, and both k and k × D0 are in the same
plane. Finally, the vector T D �k×�k × D0� points in the y direction, which is the
direction of D and Eq. (4.23) is satisfied.

Next, with the e-wave, the operations of Eq. (4.26) are performed as shown in
Fig. 4.4c. D is polarized in the x–z plane and is also perpendicular to k. Eq. (4.25)
for the e-wave is

D D

Dx

0

Dz


 �4.31�

The first operation

D0 D

$

1

n2


D �4.32�

brings D to D0. Using the hypothetical example in Eq. (4.28), D0 becomes

D0 D 1

n2
o


 Dx

0
1
10Dz


 �4.33�

Even though the z component of D0 is reduced to one-tenth of Dz, D0 is still in the
x–z plane. Next, the vector k × D0 points in the �y direction. What is important here
is that k × D0 always points in the �y direction regardless of the value of D0

z.
The final cross product with k brings the vector

T D �k×�k × D0�

into the x–z plane and also is perpendicular to k, which is the original direction of D.
Thus, the directions of T and D match and the wave equation Eq. (4.23) is satisfied.

Thus, in conclusion, we have learned that there are two types of waves in an
anisotropic crystal: o- and e-waves. The directions of polarization of D for both o- and
e-waves are in the plane perpendicular to k, but that of the o-wave is the y direction
and that of the e-wave is in the plane containing k and the optic axis. The directions of
polarization of D for these waves are orthogonal to each other. No other directions
of polarization are allowed. How then can light incident with an arbitrary direction
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of polarization be analyzed? The answer is to decompose the incident wave into two
waves, each with the allowed direction of polarization. Propagation of each component
wave is treated separately and summed at the exit of the crystal to obtain the expression
of the transmitted light.

4.4.2 Analytical Representation of the Conditions of Propagation in a
Uniaxial Crystal

In the previous section, a vector diagram argument was presented to show that only
e-waves and o-waves propagate in a uniaxial crystal. Here, an analytical representation
of each operation will be made. Let us start with an arbitrary D given by

D D

Dx

Dy

Dz


 �4.34�

Since D and k are perpendicular to each other from Eq. (4.20),

k · D D 0 �4.35�

Inserting Eqs. (4.24) and (4.34) into Eq. (4.35) gives

Dz D �kx

kz
Dx �4.36�

Let �
$
1 /n2� be


$

1

n2


 D 1

n2
o




1 0 0

0 1 0

0 0
n2

o

n2
e


 �4.37�

Combining Eqs. (4.34), (4.36), and (4.37) gives


$

1

n2


D D 1

n2
o




Dx

Dy

�n2
o

n2
e

kx

kz
Dx


 �4.38�

The value inside the square bracket of Eq. (4.26) is

k ×




$

1

n2


D


 D 1

n2
o




Oi Oj Ok
kx 0 kz

Dx Dy �n2
o

n2
e

kx

kz
Dx




D 1

n2
o




�kzDy(
kz C n2

o

n2
e

k2
x

kz

)
Dx

kxDy




�4.39�
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Another cross product with k is performed to find T of Eq. (4.26):

T D �k × k ×




$

1

n2


D


 D 1

n2
o




(
k2
z C n2

ok
2
x

n2
e

)
Dx

k2Dy

�kx

kz

(
k2
z C n2

ok
2
x

n2
e

)
Dx


 �4.40�

where

k2 D k2
x C k2

z �4.41�

The conditions for T to become parallel to D are found by setting the cross product
of the two to zero:

D × T D 0 �4.42�

Inserting Eqs. (4.34), (4.36), and (4.40) into Eq. (4.42) gives

D × T D 1

n2
o




kx

kz

[
k2 �

(
k2
z C k2

x

n2
o

n2
e

)]
DxDy

0[
k2 �

(
k2
z C k2

x

n2
o

n2
e

)]
DxDy


 �4.43�

Thus, for D and T to be parallel requires that each component of Eq. (4.43) is zero.
These conditions are categorized as follows.

Case 1: n2
o=n

2
e = 1

This condition means that the medium is isotropic. From Eq. (4.41), the value in the
inner square bracket inside Eq. (4.43) becomes zero; thus Dx and Dy can be arbitrary.
Note, however, that Dz has to satisfy Eq. (4.36) so that D remains perpendicular
to k.

Case 2: n2
o=n

2
e 6= 1

The medium is anisotropic. This situation can be split into three subcases.

(a) o-Wave

Dx D 0

Dy 6D 0

Dz D �kx

kz
Dx D 0

�4.44�

This condition means D is parallel to the y direction and is perpendicular
to the plane of the optic axis (x–z plane) and k. Thus, this case fits the
description of the o-wave.
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(b) e-Wave

Dx 6D 0

Dy D 0

Dz D �kx

kz
Dx 6D 0

�4.45�

This means that D is in the plane made by the optic axis of the crystal and k
and yet is perpendicular to k. This is precisely the description of the e-wave.

(c) Propagation along the z axis. The factors in the inner square bracket of the
first and third row in Eq. (4.43) can be rewritten using Eq. (4.41) as

k2
x

(
1 � n2

o

n2
e

)
D 0 �4.46�

which means

kx D 0

Since ky is already zero, only kz is nonzero, meaning that propagation is
along the z axis. Dx and Dy can be arbitrary but Dz has to be zero because
kx in Eq. (4.36) is zero.

4.4.3 Wavenormal and Ray Direction

The direction of the energy flow of light, which is called the ray direction, is expressed
by the Poynting vector

s D E × H �4.47�

The ray direction s is perpendicular to both E and H, and s is also included in the
DEks plane in Fig. 4.3. The vector s shows the direction of energy flow and is the
direction that your eyes have to be positioned at, if you want to see the light. It is,
however, k but not s that follows Snell’s law.

Now, referring to Fig. 4.5, H is taken along the y axis, hence s is in the x–z plane.
The relationship between the directions of s and k will be calculated. Let

s D sx î C szk̂ �4.48�

and

tan ! D sx
sz

�4.49�

where ! is the angle that s makes with the z axis (or the optic axis). The vector s is
perpendicular to E from Eq. (4.47) and E · s D 0; hence,

Exsx C Ezsz D 0 �4.50�

With Eq. (4.50), Eq. (4.49) becomes

Ez

Ex
D � tan ! �4.51�
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z Ray direction s

Wavenormal k

Figure 4.5 The wavefront, wave normal, and ray direction of the e-waves. (The y axis is into the
page.)

Similarly,

k D kx î C kzk̂

and

tan " D kx

kz
�4.52�

Since k and D are perpendicular, k · D D 0:

kxDx C kzDz D 0 �4.53�

From Eqs. (4.52) and (4.53), we have

Dz

Dx
D � tan " �4.54�

From Eq. (4.10), the e-wave components are related as

Dz

Dx
D
(

ne

no

)2 Ez

Ex
�4.55�

Equations (4.51), (4.54), and (4.55) give

tan " D
(

ne

no

)2

tan ! �4.56�

The results of the e-wave calculations are shown in Fig. 4.5. Vector s, which
indicates the direction of the flow of light energy, does not coincide with k, which
indicates the direction of the normal to the wavefront. Also, the direction of polarization
of E is not on the surface of the wavefront.

An analogy can be made with a sheet of cardboard paper blown into the air. The
direction of the flight is not necessarily normal to the surface of the cardboard.

Another analogy is that of the skier. When a downhill skier climbs up a steep hill,
the skis are set parallel to the contour line of the hill to prevent slips and the skier



SOLVING THE GENERALIZED WAVE EQUATION IN UNIAXIAL CRYSTALS 277

climbs off the fall line to decrease the effective slope. The parallel lines of the ski
tracks resemble the wavefront, the fall line of the hill resembles the wavenormal k,
and the movement of the skier resembles the ray path s.

Now, the double image seen through a calcite crystal (Iceland spar) can be explained.
As shown in Fig. 4.6, a spotlight P is placed on the left surface of a calcite crystal

Polarizer

P'

P

e-Wave

o-Wave

In the
principal
section

D

s2
E

Normal
to the

principal
section

Principal
section

Optic axis

k2

Figure 4.6 Birefringent image made by calcite crystal.

k
s

Contour

Direction
of climb

Fall line

When a skier climbs a steep hill, the skiis are set parallel to the contour lines of the hill to avoid sliding,
and the path of the climb is set off the fall line to decrease the effective slope. The direction of the
skier is s.
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and is observed from the right. The hatched plane, which contains the optic axis and
also is perpendicular to the pair of cleaved surfaces is called a principal section. The
incident light is polarized in an arbitrary direction. The energy of the o-wave polarized
perpendicular to the principal section goes straight through following k2 while the
energy of the e-wave polarized in the principal section follows the direction of s2. To
the observer, one spot appears as if it were two spots. If the e- and o-wave images pass
through a polarizer, then spots P and P0 can be selectively seen by rotating the polarizer.
The quantitative treatment of the same configuration will be described in Example 4.3.

Example 4.1 Draw the allowed directions of D, E, s, and H for o- and e-waves for
the following three cases: (a) k is along the x axis, (b) k is at an arbitrary angle " with
respect to the z axis but in the x–z plane, and (c) k is along the z axis. The crystal
axis is along the z axis.

Solution The answers are summarized in Fig. 4.7. The direction of H is always
perpendicular to the DEks plane. �

Example 4.2 As shown in Fig. 4.8, the unit vector ŝ of the ray direction s in an
anisotropic crystal is �1/2, 0,

p
3/2�. The optic axis of the crystal is along the z axis.

The tensor refractive index is

jn2j D

 2 0 0

0 2 0

0 0 3




Find the directions (unit vectors) ê, d̂ and k̂ , respectively, for E, D, and k. Find those
for both the o- and e-waves. (Note that in order to distinguish the unit vector for the z
direction from the unit vector for the wavenormal, script Ok is used for the unit vector
for the wavenormal.)

Solution For the o-wave, the unit polarization vectors ê and d̂ are (0, 1, 0) or along
the y axis, and k̂ D ŝ D �1/2, 0,

p
3/2�.

For the e-wave, the fact that E and s are perpendicular gives

s · E D 0

1

2
Ex C

p
3

2
Ez D 0

Ex

Ez
D �

p
3

tan�1 �
p

3 D �60°

The unit vector ê is ��p
3î, 0ĵ, k̂�/

p
1 C 3:

ê D E
jEj D 1

2
��

p
3 Oi, 0Oj, Ok�
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Figure 4.7 D, E, H, and s for various k of the o- and e-waves. The crystal axis is along the z axis.
(The y axis is into the page.)
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Figure 4.8 Given s, find the directions of E and D of the e-wave in an anisotropic crystal with
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. (The y axis is into the page.)
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The tensor operation is performed as follows:

D D �0�
$n 2

�OeE

D D �0
E

2


 2 0 0

0 2 0

0 0 3




�p

3

0

1




D �0E


�p

3

0

3/2




Od D D
jDj D 1p

4 ð 3 C 9
��2

p
3î, 0ĵ, 3k̂�

D 1p
21

��2
p

3î, 0ĵ, 3k̂�

The angle that Od makes with the optical axis is 49°.
Next, k̂ is found. k is perpendicular to D.

� 2
p

3kx C 3kz D 0

" D tan�1
(

kx

kz

)
D tan�1

(
3

2
p

3

)
D 41°

Ok D k
jkj D 1p

21
�3î, 0, 2

p
3k̂� �

4.4.4 Derivation of the Effective Index of Refraction

The emphasis has been placed on the direction of the propagation constant k, and
the magnitude k has not yet been obtained. The value of k depends on the direction
of D. When D is pointed along the optic axis, the dielectric constant is �0n2

e and the
propagation constant is nek0; on the other hand, when D is in the direction perpendicular
to the optic axis, the propagation constant is nok0. The magnitude of the wavenormal
k from an arbitrary direction of D will be obtained here. Using Eq. (4.26), Eq. (4.23)
can be rewritten as

T D k2
0D �4.57�

Equation (4.40) is rewritten in diagonal matrix form as

T D




k2
z

n2
o

C k2
x

n2
e

0 0

0
k2

n2
o

0

0 0
k2
z

n2
o

C k2
x

n2
e





Dx

Dy

Dz


 �4.58�

where Eq. (4.36) was used to convert Dx into Dz.
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Inserting Eq. (4.58) into (4.57) gives




k2
z

n2
o

C k2
x

n2
e

� k2
0 0 0

0
k2

n2
o

� k2
0 0

0 0
k2
z

n2
o

C k2
x

n2
e

� k2
0





Dx

Dy

Dz


 D 0 �4.59�

Since the right-hand side is zero, the determinant has to vanish in order for Dx, Dy ,
and Dz to have nonzero solutions:

(
k2
z

n2
o

C k2
x

n2
e

� k2
0

)2 (
k2

n2
o

� k2
0

)
D 0 �4.60�

Equation (4.60) is called the characteristic equation of k, which can be separated into

k2
z

n2
o

C k2
x

n2
e

D k2
0 �4.61�

which is the equation of an ellipse in the kx –kz plane and

k2

n2
o

D k2
0 �4.62�

which is the equation of a circle. Equation (4.59) is rewritten as(
k2
z

n2
o

C k2
x

n2
e

� k2
0

)
Dx D 0 �4.63�

(
k2

n2
o

� k2
0

)
Dy D 0 �4.64�

(
k2
z

n2
o

C k2
x

n2
e

� k2
0

)
Dz D 0 �4.65�

If Eq. (4.61) is the condition, Eqs. (4.63) and (4.65) mean that Dx and Dz can be
nonzero, and this is precisely the condition of the e-wave. Similarly, if Eq. (4.62) is
the condition, then Dy can be nonzero, and this is the condition for the o-wave.

With the e-wave, the magnitude k of the propagation constant depends on the
direction of k. k is inclined at an angle " with respect to the z axis, and

kx D k sin ", kz D k cos " �4.66�

Inserting Eq. (4.66) into Eq. (4.61) gives the value of k for a given direction of
propagation.

k D šneff�"�k0 �4.67�
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where

neff�"� D 1√(
cos "

no

)2

C
(

sin "

ne

)2
�4.68�

For the e-wave, neff�"� is the effective index of refraction when the angle of incidence
is ".

Similarly, for the o-wave from Eq. (4.62), the magnitude of the propagation constant is

k D šnok0 �4.69�

and k is independent of the angle of incidence.

4.5 GRAPHICAL METHODS

Methods that provide D, E, k, H, and s graphically, thereby alleviating some of the
calculation, will be presented in this section. Two kinds of graphical methods will be
explained: the wavevector and indicatrix methods. The wavevector method makes use
of the k-space concept and emphasis is placed on propagation of the wavefront. The
indicatrix method is based on the space of the indices of refraction and emphasis is on
the optical properties of the medium.

4.5.1 Wavevector Method

The wavevector method [7] combines the ellipses calculated in Section 4.4.4 with a
method for obtaining k and s.

For simplicity, the uniaxial crystal case is considered. The characteristic equations
(4.61) and (4.62) are represented in kx, ky , and kz coordinates. Figure 4.9 shows the
cross section in the ky D 0 plane. Equation (4.61) is an ellipse with semiaxes, nek0 and
nok0 and Eq. (4.62) is a circle with radius nok0. With regard to the ellipse, note that
the semiaxis nek0 lies on the kx axis, and the semiaxis nek0 lies on the kz axis. Let us
now start to dig out as much information as possible from the graph in Fig. 4.9.

Let the wavenormal of the incident light be at an angle " with respect to the kz axis,
as represented by 0P

0
in Fig. 4.9a and 0P in Fig. 4.9b. The quantities: D, E, H, s, k,

neff, and the wavenormal or the wavefront are discussed in point form below.

1. There are two D’s that are orthogonal to each other, and they are both in the
plane perpendicular to k. The electric displacement field for the o-wave, labeled
as D0 in Fig. 4.9a, is in the ky direction. The D field associated with the e-wave
lies in the kx –kz plane in Fig. 4.9b.

2. The direction of E for the e-wave is tangent to the ellipse at point P. As this
statement may not be immediately evident, a short proof is given.
Taking the derivative of Eq. (4.61) with respect to kx gives

2kz

n2
o

dkz

dkx
C 2kx

n2
e

D 0 �4.70�
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Figure 4.9 Wavevector diagram in a uniaxial crystal with ne > no (positive crystal). (a) o-wave.
(b) e-wave.

and hence

dkz

dkx
D �

(
no

ne

)2 kx

kz
�4.71�

Using Eq. (4.54) with (4.52) gives

dkz

dkx
D Ez

Ex
�4.72�

Thus, the tangent of the ellipse is the direction of the E field of the e-wave.
3. The direction of H is perpendicular to the plane made by k and E as indicated

by Eq. (4.21). The H field for the e-wave is in the y direction. The H0 field for
the o-wave is in the x–z plane and perpendicular to k.

4. The Poynting vector s is obtained from E × H. The direction of s for the e-wave
is normal to E and thus normal to the ellipse at P. The Poynting vector s0 of the
o-wave is in the same direction as k.

5. Lastly, it should be mentioned that it is usually the ray direction s that is given in
the laboratory. In many cases the direction of the wavenormal k is not explicitly
given. For a given s, however, k can be found. Let the given direction of s be
represented by the dotted line 0Q. Find the tangent to the ellipse that is normal
to 0Q. The intersection of the tangent line with the ellipse determines the point
P. The line 0P is k.

6. neff�"�k0 is represented by 0P.
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Figure 4.10 Finding the transmitted ray direction s2 for a given incident ray direction s1, using the
wavevector diagram.

Next, a method of solving the refraction problem using the wavevector diagram will
be described by a sequence of steps with brief descriptions for each step.

As indicated in Fig. 4.10, the optic axes of the two crystals are collinear, and the
wavevector diagrams of the two crystals share a common origin. Only half of each
wavevector diagram is shown in the figure. As described in the previous section, the
light ray s1 is incident from the lower crystal 1 to crystal 2. The problem is to find the
direction of the transmitted ray in crystal 2.

Step 1. In order to use Snell’s law (phase matching) find the direction "1 of the
wavenormal k1 from direction !1 of s1, as demonstrated earlier. The tangent line
P1Q1, which is perpendicular to s1, is drawn. The line drawn from the origin to P1

is the direction of k1. The analytic expression relating the two angles is Eq. (4.56).
Step 2. The incident wave normal k1, is 0P1. The analytic expression for k1 is

Eq. (4.67).
Step 3. Find the propagation constant ˇ1 along the interface, which is 0B1, where B1

is the normal from P1 to the boundary surface.

ˇ1 D k1 sin "1 �4.73�

Step 4. In order to satisfy the condition of the phase matching across the boundary,
find the point B2 such that

0B1 D 0B2 �4.74�

or

ˇ1 D ˇ2 �4.75�

Step 5. The angle "2 of the emergent wavenormal is found. Draw normal P2B2 from
the interface to intersect the wavevector diagram of crystal 2. 0P2 is the direction
of the emergent wavenormal.
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The analytical expression for ˇ2 can be found from Eqs. (4.67) and (4.68):

ˇ1 D ˇ2 D k0 sin "2√(
cos "2

no2

)2

C
(

sin "2

ne2

)2
�4.76�

which is a quadratic equation in sin "2. The solution of Eq. (4.76) is

sin "2 D

(
ˇ1

k0no2

)
√

1 C
(

ˇ1

k0

)2 ( 1

n2
o2

� 1

n2
e2

) �4.77�

Step 6. Finally, s2, which is perpendicular to the tangent line P2Q2, is drawn and the
emergent ray direction !2 is found. The alternative is the use of Eq. (4.56).

Next, a description of total internal reflection is added. The condition of total
internal reflection is that ˇ1 starts to exceed ne2k0;

ˇ1 D ne2k0 �4.78�

With this condition the critical angle "c is obtained as

sin "c D ne2

no1

1√
1 C n2

e2

(
1

n2
o1

� 1

n2
e1

) �4.79�

4.5.2 Indicatrix Method

Whereas the wavevector method is closely linked to k space, the indicatrix method [8]
utilizes the space formed by the indices of refraction of the crystal. The indicatrix
method is an elegant way of handling crystal optics.

Using the vector identity

A×�B × C� D B�A · C� � C�A · B� �4.80�

Eq. (4.22) is rewritten as

k2E � k�k · E� D ω2�D �4.81�

The scalar product of D with Eq. (4.81) eliminates the second term due to the fact that
D · k D 0, and Eq. (4.81) becomes

k2E · D D ω2�D · D �4.82�

Equation (4.82) is rewritten as

k2

ω2��0

(
Dx

�rx
Oi C Dy

�ry
Oj C Dz

�rz
Ok
)

·D D D2 �4.83�
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Equation (4.83) can be recast as(
x

n1

)2

C
(

y

n2

)2

C
(

z

n3

)2

D 1 �4.84�

where

x D k

k0

Dx

D
n2

1 D �rx

y D k

k0

Dy

D
n2

2 D �ry

z D k

k0

Dz

D
n2

3 D �rz

D D jDj

�4.85�

Equation (4.84) is an ellipsoid in the x, y, z coordinates that are the normalized Dx, Dy ,
Dz coordinates. The principal axes of the ellipsoid, n1, n2, and n3, are the principal
refractive indices of the crystal. Such an ellipsoid is called the optical indicatrix, or
simply indicatrix, or Fletcher’s indicatrix after the scientist who first proposed the
method in 1891 [9].

The procedure for obtaining D, E, k, s, and neff using the indicatrix will be
explained in seven steps using the uniaxial case of n1 D n2 D no and n3 D ne. Some
mathematical verifications will follow.

Step 1. We assume that the direction of the wavenormal is known and is in the x–z
plane. Draw line 0P from the center 0 of the ellipsoid to the direction of the
wavenormal, as shown in Fig. 4.11. Figure 4.12 is the cross section of the index
ellipsoid in the x–z plane.

P

E

A

z
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x

k
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Radial
vector at P ′
(energy flow)

B

"Cross-sectional
ellipse"

Normal plane
to k (wavefront)no

no

−y

P ′

E′
D′

D

0

Figure 4.11 Method of the optical indicatrix.
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Figure 4.12 The e-wave fields in a uniaxial crystal obtained by the indicatrix. Numbers correspond
to the appropriate steps in the text. (The y axis is into the page.)

Step 2. Find the plane that passes through the center of the ellipsoid in the direction
perpendicular to 0P. The cross section of the ellipsoid cut by this plane is an ellipse,
as indicated by the hatched area in the figure. This “cross-sectional ellipse” is of
great importance for investigating propagation in the crystal.

Step 3. The conditions on the polarization direction of D in Section 4.4.2, described
for the case when k is in the x–z plane, are summarized. Only two directions of
polarization are allowed for a wave to propagate in an anisotropic medium. One
polarization is in the y direction (o-wave) and the other is in the direction defined by
the intersection of the plane perpendicular to k with the x–z plane (e-wave). With
regard to the geometry of the indicatrix, these two allowed directions of polarization
are in the directions of the major and minor axes D and D0 of the “cross-sectional
ellipse.” No other direction of polarization is allowed [10].

Step 4. The normals to the ellipse at A and B are the directions of E and E0.
Step 5. Find the plane that is tangent to the ellipsoid as well as perpendicular to 0P

or k. This tangent plane is the wavefront, and the D’s are parallel to this plane. The
direction of energy flow is found from the contact point P0 of the tangent plane to
the ellipsoid. 0P0 is the direction of the ray vector s. (The proof is given later in
this section.)

Step 6. The directions of H and H0 (not indicated in Fig. 4.11) are the directions
perpendicular to the planes made by k and E and k and E0.

Step 7. When k is in a more general direction, one can always rotate the coordinates
so that k is in the x–z plane because of the cylindrical symmetry of the indicatrix.
However, by expanding the rule for using the indicatrix, there is no need to rotate the
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Figure 4.13 The ‘‘cross-sectional ellipse’’ in the indicatrix determines the allowed directions of
polarization OA (e-wave) and OB (o-wave). They are in the directions of the principal axes.

coordinates. The general rule for the use of the indicatrix is as follows. As shown in
Fig. 4.13, the intercept of the plane perpendicular to k with the ellipsoid generates
the “cross-sectional ellipse” with principal semiaxes 0A and 0B. The only allowed
directions of the polarization are 0A (e-wave) and 0B (o-wave). The lengths of 0A
and 0B are the effective refractive indices neff for the e- and o-waves, respectively.

The proofs of some of the steps will be given.
Let us examine now in more detail the relationship between the quantities shown

in Fig. 4.12 and equations derived earlier for the e-wave in a uniaxial crystal. We will
now prove that the normal to the ellipse at point A in Fig. 4.12 is the direction of E
(as stated in Step 4 of the indicatrix method).

By taking the gradient of the left-hand side of Eq. (4.84) with y D 0 and n1 D no

and n3 D ne, the normal vector N is obtained. Let (see boxed note)

F D
(

x

no

)2

C
(

z

ne

)2

�4.86�

The normal vector N is

N D WF �4.87�

and

N D 2x

n2
o

î C 2z

n2
e

k̂ �4.88�
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Let’s examine the meaning of the equation

( x

a

)2
C
(y

b

)2
D F �4.89�

If, for example, F D 1.12, then this equation defines an ellipse that is inflated by 10%
compared to the size of the F D 1 ellipse, a and b.

x2

�1.1a�2
C y2

�1.1b�2
D 1

The size of the ellipse is determined by the right-hand side F of Eq. (4.89). The component
of the gradiant �∂F/∂x�i is the rate of expansion of the ellipse in the x direction.

By replacing x and z at A in Eq. (4.88) by those in Eq. (4.85), the normal vector is
expressed as

N D 2k

k0D

(
Dx

n2
o

î C Dz

n2
e

k̂
)

�4.90�

From Eq. (4.10), N is rewritten as

N D 2k

k0D
[ExOi C Ez Ok] �4.91�

and

N D 2k

k0D
E �4.92�

Thus, it has been proved that E is in the direction of the normal.
Referring to Fig. 4.12, we will now prove that 0P

0
is perpendicular to E and hence

parallel to s (as stated in Step 5 of the indicatrix method). P0 is the contact point on
the ellipse of the tangent line that is perpendicular to k. With the conditions y D 0,
n1 D no, and n3 D ne, and taking the derivative with respect to x of both sides of
Eq. (4.84) at point P0, one obtains

dz

dx
D �x

z

(
ne

no

)2

�4.93�

The tangent that is perpendicular to k and hence parallel to D is

dz

dx
D Dz

Dx
�4.94�

Equations (4.11) and (4.94) are put into Eq. (4.93) to obtain

z

x
D �Ex

Ez
�4.95�

The line 0P
0

connecting the origin and the contact point P0 is

0P
0 D xî C zk̂ �4.96�
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From Eqs. (4.95) and (4.96),

0P
0 · E D 0 �4.97�

Thus, 0P
0

is perpendicular to E and in the direction of s because of Eq. (4.47) with H
in the �y direction.

Finally, the value of k is examined. When vector k is at angle " with respect to the
optic axis, the coordinates (x, z) at point A in Fig. 4.12 are ��r cos ", r sin "�. Since
this point is on the ellipse expressed by Eq. (4.84), we have

r2

[(
cos "

no

)2

C
(

sin "

ne

)2
]

D 1 �4.98�

Next, the physical meaning of r is found. The length r in the x, z coordinates can be
rewritten using Eq. (4.85) as

r D
√

x2 C z2 D k

k0



√

D2
x C D2

z

D


 �4.99�

Since the value inside the square root is unity, Eq. (4.99) with Eq. (4.98) becomes

r D k

k0
D neff �4.100�

where

neff D 1√(
cos "

no

)2

C
(

sin "

ne

)2
�4.101�

which is the same expression as Eq. (4.68). Thus, it has been proved that the optical
indicatrix results are identical with the wavevector results.

Both the indicatrix and the wavevector diagram are used for treating refraction
at the boundary between anisotropic media. Crystals whose refractive indices change
due to electrooptic or acoustooptic effects are characterized by the indicatrix, and
the indicatrix method is generally a better choice for this situation. However, the
wavevector approach is usually preferred when a knowledge of the phase velocity is
required, such as problems involving wave dispersion or the interaction of lightwaves
with other types of waves like acoustic waves. Either way, the difference between the
two approaches is rather slim. The indicatrix approach to boundary problems will be
presented in Section 4.6.

Example 4.3 A light ray is incident from air onto the principal section (Example 4.1)
of a calcite crystal whose optic axis is titled by 48° with respect to the front surface, as
shown in Fig. 4.14. If the thickness of the crystal is 2 cm, what is the distance between
the two spots seen on the emergent surface of the crystal. The indices of refraction are
no D 1.658 and ne D 1.486.

Obtain the qualitative solutions by means of the wavevector method and indicatrix
method, and then calculate the distance numerically.
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Figure 4.14 A light ray with two orthogonal polarizations is incident onto calcite. The parallelogram
represents the principal section shown in Fig. 4.6.
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Solution Graphical solutions are shown in Figs. 4.15a and 4.15b and the analytical
solution in Fig. 4.15c. The incident light ray is decomposed into two orthogonal
directions of polarization. The o-wave obeys Snell’s law, and because it enters the
crystal at normal incidence, it propagates straight through the crystal.

The e-wave is slightly different. k1 and k2 obey Snell’s law, and both are normal to
the boundary. The angle of transmittance with respect to the crystal axis is therefore,
from Fig. 4.15c, "2 D 42°. By Eq. (4.56) the transmitted angle !2 of the light ray is
!2 D 48.26°. Thus, the e-wave is refracted at the boundary by 6.26° from the normal
to the boundary. �

4.6 TREATMENT OF BOUNDARY PROBLEMS BETWEEN ANISOTROPIC
MEDIA BY THE INDICATRIX METHOD

When the light encounters a boundary between two media with different optical
properties, part of the energy is transmitted into the second medium, and the other
part is reflected back into the original medium. In this section, the boundary between
uniaxial anisotropic media is treated [5,11,12]. Section 4.6.1 treats the transmitted
wave; Section 4.6.2, the reflected wave; and Section 4.6.3, total internal reflection.
Before beginning, a few important general remarks made earlier will be repeated here.

On the boundary between the two media with different indices of refraction, the
incident light changes its direction of propagation for the sake of phase matching.
Recall that it is the direction of the wavenormal that obeys Snell’s law. It is not the
direction of the energy flow (ray direction) that obeys Snell’s law. This is because
Snell’s law is the law that synchronizes the phasefronts of the incident, transmitted,
and reflected light across the boundary, as explained in Section 2.2.

In dealing with refraction between uniaxial anisotropic media, the incident wave has
to be first decomposed into two component waves: one wave is the o-wave and the other
is the e-wave. The respective amplitudes of the two waves are found as the projection
of the amplitude of the incident wave into these two directions of polarization. The
two waves are treated separately and the results are added to reach the final answer.

Since the direction of the wavenormal of the o-wave is identical to the ray direction,
the transmitted and reflected waves of the o-wave can be obtained in exactly the same
manner as described in Section 2.3 and it will not be repeated here. The explanation
in this section is devoted to the e-wave.

4.6.1 Refraction of the e-Wave at the Boundary of Anisotropic Media

For a given incident e-wave ray s1, the transmitted e-wave ray s2 will be found [13]. It
is the direction of the light ray s that is usually given. In order to utilize Snell’s law, the
direction of the light ray s has to be converted into that of the wavenormal k. After using
Snell’s law, the direction of the wavenormal is converted back to the ray direction.

It is assumed that the optic axes of the two crystals are collinear, as shown in
Fig. 4.16. The indices of refraction of the bottom uniaxial crystal 1 are denoted as


n2

o1 0 0

0 n2
o1 0

0 0 n2
e1



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Figure 4.16 Refraction at the boundary of two uniaxial crystals. The optic axes of crystals 1 and 2
are collinear.

and those of the top crystal 2 by


n2

o2 0 0

0 n2
o2 0

0 0 n2
e2




The indicatrixes of the two crystals share a common origin and only half of each
indicatrix is drawn in the figure.

The light ray s1 is incident from the lower crystal 1 to the upper crystal 2. This
ray direction is first converted into the wavenormal k1. The light ray s1 intersects the
lower ellipse at point P0

1. The tangent to the ellipse at P0
1 is drawn. A line is drawn

from the origin perpendicular to this tangent line. Let P1 denote the intersection of the
line from the origin with the tangent line. The wavefront of the incident wave is P1P0

1
and the wavenormal k1 is along 0P1. The angle k1 makes with the z axis is "1.

Now that the angle "1 of the incident wavenormal is found, Snell’s law can be
applied. The effective index of refraction neff 1 of crystal 1 is readily found by drawing
line 0R1 from the origin perpendicular to k1. Snell’s law is

neff 1 sin "1 D neff 2 sin "2 �4.102�

For the special orientation of the optic axis of the crystal perpendicular to the boundary,
the angle that 0R1 makes with the x axis is identical to the angle "1 of incidence. Thus,
the value of the left-hand side of Eq. (4.102) is graphically represented by the height
h of R1 from the x axis.
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Now let us consider the right-hand side of Eq. (4.102). A horizontal line is drawn at
a height h above the x axis. The intersection R2 that the horizontal line R2R0

2 makes with
the indicatrix is determined. The length 0R2 now graphically represents the effective
index of refraction neff 2 of the second medium. The direction perpendicular to 0R2 is
the direction of the wavenormal of the transmitted wave. Since the optic axis of the
crystal is perpendicular to the boundary, the angle that 0R2 makes with the x axis is
identical to the transmitted angle "2 that k2 makes with the optic axis. Finally, the
transmitted ray s2 is obtained by finding the line P2P0

2, which is tangent to the ellipse
as well as perpendicular to k2. Thus, s2 was found from s1.

The above graphical method will be supplemented by a brief description of the
analytical method. First, the incident ray direction !1 is converted into "1 of the incident
wavenormal using Eq. (4.56).

The value of h of the incident light is

h D neff 1 sin "1 �4.103�

where the effective refractive index neff 1 D k1/k0 is obtained from Eq. (4.68).

h D sin "1[(
cos "1

no1

)2

C
(

sin "1

ne1

)2
]1/2 �4.104�

The angle "2 of the transmitted light is calculated from the fact that h for medium 1
remains the same as that for medium 2. The value of "2 has to be calculated for a
given h value.

h D sin "2[(
cos "2

no2

)2

C
(

sin "2

ne2

)2
]1/2 �4.105�

This quadratic equation in sin "2 can be solved in the same manner as Eq. (4.77) was
obtained from Eq. (4.76). The result is

sin "2 D

(
h

no2

)
√

1 C h2

(
1

n2
o2

� 1

n2
e2

) . �4.106�

Finally, the angle "2 of the wavenormal of the transmitted light is converted into angle
!2 of the emergent light ray using Eq. (4.56).

Problem 4.3 deals with the case when the two optic axes of the crystal are at an
angle.

4.6.2 Reflection of the e-Wave at the Boundary of Anisotropic Media

Regardless of the type of media, the direction of the reflected wave is such that the k
component of the reflected light that is parallel to the boundary is phase matched with
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that of the incident light. When the optic axis of the crystal is normal to the boundary,
as in Fig. 4.16, the angle of the reflected wavenormal is equal to the angle of the
incident wavenormal. However, when the optic axes of the crystal are not normal to
the boundary, such as shown in Fig. 4.17, the angle of reflection differs from the angle
of incidence.

Referring to Fig. 4.17, light is incident from the lower crystal 1. Only the e-wave
that is reflected back into crystal 1 is considered here. Let the incident wavenormal
be k1. The angle of the reflected wavenormal has to be such that the wavelength
along the boundary matches that of the incident wave. The phase matching conditions
(Section 2.2) between the wavefronts of the incident and reflected light are

h1 D neff 1 sin "0
1 �4.107�

h3 D neff3 sin "0
3 �4.108�

where "0
1 is the angle between the incident wavenormal to the boundary and the normal

to the boundary, and "0
3 is the angle between the reflected wavenormal and the normal

to the boundary. The phase matching condition is satisfied for

h1 D h3 D h �4.109�

The graphical solution for "0
3 is as follows. Referring to Fig. 4.17, the line 0R1

perpendicular to k1, drawn from the origin to the ellipse, is the effective index neff 1 of
the incident wave. Line R1H1 to the x axis represents h1. The intersection of the
horizontal line R1R3 and the ellipse determines h3, and 0R3 represents neff 3. The
direction normal to 0R3 gives k3 of the reflected wave. Thus, the angle of reflection

Indicatrix

C1

R1

k3

H1

C2

H3
q ′3

q ′3
q ′1

q1

neff 3
h3

R3
k1

1

2

neff1

h1

x

z

0

q ′1

Figure 4.17 Boundary of two crystals where the optic axes are not perpendicular to the boundary.
C10, C20, and s1 are all in the y D 0 plane.
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was obtained from the angle of incidence. It should be noted that k1 and k3 are
not symmetric with respect to the normal to the boundary when the optic axis of
crystal 1 is not normal to the boundary. Transmission across such a boundary is left
to Problem 4.3.

Note that the angle of reflection is independent of medium 2. As in the isotropic
case, the amount of reflection is influenced by medium 2 but not the angle of reflection.

4.6.3 Total Internal Reflection of the e-Wave at the Boundary of
Anisotropic Media

Total internal reflection takes place when the effective index of refraction of the second
medium is not large enough to satisfy Snell’s law given by Eq. (4.102). The case shown
in Fig. 4.16 is taken as an example. In this case, the indicatrix of the top medium is
smaller than that of the bottom medium, and when light is incident from the bottom
medium to the top medium, the condition for total internal reflection can exist. The h
value of the incident wave is

h D neff 1 sin " �4.110�

The h values of the top and bottom crystals have to be matched but the largest value
that h can take in the top crystal 2 is ne2; thus, total internal reflection takes place at
an incident angle "c such that

neff 1 sin "c D ne2 �4.111�

where "c is the critical angle.
Using Eq. (4.68), Eq. (4.111) becomes

ne2 D sin "c(
cos "c
no1

)2

C
(

sin "c
ne1

)2

Mere comparison of the form of this equation with that of Eq. (4.105) gives

sin "c D ne2

no1
Ð 1√

1 C n2
e2

(
1

n2
o1

� 1

n2
e1

) �4.112�

where the subscripts 1 and 2 denote crystals 1 and 2. Equation (4.112) is identical
to Eq. (4.79), which was obtained by the wavevector method in Section 4.5.1.
Equation (4.112) reduces to the familiar expression for the critical angle of the isotropic
case when no1 D ne1 and n02 D ne2.

Example 4.4 Lithium niobate (LiNbO3) is deposited over lithium tantalate (LiTaO3)
with the optic axes of both crystals normal to the interface. The indicatrixes are shown
in Fig. 4.18. A light ray is incident on the boundary from the bottom layer, lithium
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Optic axis
of the crystal

2.200

LiNbO3

LiTaO3

Indicatrix

Indicatrix

30°

?

2.176
2.286

2.180

0

s2

s1

x
1

2

z

Figure 4.18 Refraction at the boundary between anisotropic media.

tantalate, at an incident angle "1 D 30°. Calculate the emergent ray direction of the
e-wave.

Material no ne

Medium 2 LiNbO3 2.286 2.200
Medium 1 LiTaO3 2.176 2.180

The wavelength of the incident light is - D 0.633 µm.

Solution The emergent ray direction will be found. First, the ray direction is converted
into that of the wavenormal using Eq. (4.56) with !1 D 30°:

"1 D 30.09°

The effective index of refraction k/k0 at this incident angle is calculated using
Eq. (4.68),

neff 1 D 2.177

and

h D neff 1 sin "1 �4.113�

Equation (4.106) can be used for finding "2 by putting h = 1.092. The value of "2 is

"2 D 28.82°

Finally, using Eq. (4.56), "2 is converted into the emergent ray direction:

!2 D 30.72°

The results are summarized in Fig. 4.19. �



298 PROPAGATION OF LIGHT IN ANISOTROPIC CRYSTALS

Optic axis
of crystal

LiNbO3

Li Ta O3

0

1.092 28
.8

2°

30.72°

2.177

s1

k1

2.265

k2
s2

x

30.09°
30°

2

1

z

1.092

Figure 4.19 Solution to Example 4.4.

PROBLEMS

4.1 What condition enables Eqs. (4.61) and (4.62) to be satisfied simultaneously?

4.2 Obtain the characteristic matrix for the general case including the y components
of the wave in an anisotropic medium with

$
�r D




n2
˛ 0 0

0 n2
ˇ 0

0 0 n2
�




and let

k D kx î C ky ĵ C kzk̂

E D Ex î C Ey ĵ C Ezk̂

4.3 Two crystals have a common boundary in the z D 0 plane. The optic axes of the
crystals are not normal to the boundary and both are in the y D 0 plane with
indicatrixes as shown in Fig. P4.3. The light ray s1 is incident from crystal 1 at
the bottom into crystal 2 at the top. The incident light ray is in the y D 0 plane.
Using the indicatrix, find the following quantities graphically:

(a) The vector s2 of the transmitted (refracted) ray.
(b) The vector s3 of the reflected ray when total internal reflection takes place.
(c) The angle of the reflected ray.
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z

2

C2

C1

x
0

s1

1

Indicatrix

Figure P4.3 Boundary of two crystals.

Air

Core

Direction of the
optic axis
of the crystal

Direction of the optic
 axis of the crystal

Substrate

LiNbO3

LiTaO3

fs 
c

fa c

Figure P4.4 Critical angles of an anisotropic optical guide.

4.4 Find the critical angles of the rays of the o- and e-waves inside the core region
of an LiNbO3 –LiTaO3 optical guide. The optic axes of both the LiNbO3 and
LiTaO3 crystals are oriented parallel to the boundaries (Y-cut) as in Fig. P4.4.
The indices of refraction of the media are listed in Example 4.4.

4.5 (a) Figure P4.5 shows a contour whose radius r at the ray direction !
corresponds to the ray velocity (not phase velocity) in that direction. This
ray velocity surface is called Huygens’ wavelet of the e-wave ellipsoid.
Derive the expression for Huygens’ wavelet of the e-wave in terms of !, u,
ve, and vo, where vo D c/no and ve D c/ne.

(b) In the process of second harmonic generation (SHG), the energy of the light
at the fundamental frequency is converted into that of the second higher
harmonic frequency during the transmission in a nonlinear crystal. It is the
ray velocities of the two waves rather than the phase velocities that have
to be matched in order to optimize the efficiency of the energy conversion
between the two waves. How would you use Huygens’ wavelet to find the
optimum ray direction in the SHG experiment [7]?
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uz

u

0 Ux

e-Wave

o-Wave

φ

C
ne

C
no

Figure P4.5 Huygens’ wavelet. Note the differences of the coordinates among the wavevector
diagram, the indicatrix, and Huygens’ wavelet.

y

x

z

qn

P

na

ng

na

nb

0

Figure P4.6 Search for the optic axes of a biaxial crystal.

4.6 Find the optic axes of the biaxial crystal shown in Fig. P4.6. The indices of
refraction in the x, y, and z directions are n˛, nˇ, and n� , respectively; assume
that n˛ < nˇ < n� . The direction of the optic axis is the direction of propagation
such that the elliptic cross-section of the indicatrix made by the intersection with
the plane perpendicular to the direction of propagation becomes a circle. In order
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to find the direction of the optic axes, the direction k of propagation is tilted
from the z axis in the x–z plane until the elliptic cross section becomes a circle
(Fig. P4.6). Prove that the optic axes are at an angle " from the z axis, which is
given by

sin " D šn�

nˇ

√√√√n2
ˇ � n2

˛

n2
� � n2

˛
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5
OPTICAL PROPERTIES OF

CRYSTALS UNDER VARIOUS
EXTERNAL FIELDS

This chapter describes what happens when an external field is applied to a crystal
whose properties are influenced by the external field. The effects of the external field
are used to advantage to control integrated optic devices. Applications include spatial
light modulators, light displays, switches, light deflectors, isolators, and even optical
amplifiers. The fields employed for external control include electric fields, acoustic
fields, magnetic fields, or the field of light itself.

An external field in the x direction influences the optical properties not only in the
x direction but also in the y and z directions. Figure 5.1 shows an analogy. When
a rubber eraser is pressed in the z direction the deformation takes place in all x, y,
and z directions. The expression describing the external influence, therefore, becomes
a tensor form. Moreover, almost all these materials are anisotropic and the treatment
in the previous chapter will be extended to include the influences due to the external
field.

5.1 EXPRESSING THE DISTORTION OF THE INDICATRIX

The amount of distortion in the indicatrix due to any external field is rather small, and
the distorted indicatrix is still an ellipsoid. The distortions manifest themselves as a
change in the lengths of the major and minor axes, as well as a rotation of the axes.

The two-dimensional indicatrix before rotation — that is, before the application of
an external field — is given by

a1x
2 C a2y

2 D 1 �5.1�

where

a1 D 1

n2
1

and a2 D 1

n2
2

302
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Figure 5.1 Illustration of the tensor property.

The expansion and contraction of the principal axes can be expressed in terms of the
changes in a1 and a2, but the rotation of the principal axes is possible only after the
inclusion of the crossterm 2a12xy. The expression for the deformed ellipse including
the rotation of the principal axes is therefore

a11x
2 C a22y

2 C 2a12xy D 1 �5.2�

Generalizing to three dimensions, the indicatrix with no applied field is

a1x
2 C a2y

2 C a3z
2 D 1 �5.3�

where

a1 D 1

n2
1

, a2 D 1

n2
2

, and a3 D 1

n2
3

With an applied field, the indicatrix is expressed as

a11x
2 C a22y

2 C a33z
2 C 2a23yz C 2a31zx C 2a12xy D 1 �5.4�

Taking the difference between the coefficients in Eqs. (5.4) and (5.3) gives the following
vector form ai: 



a1

a2

a3

a4

a5

a6


 D




a11 � 1/n2
1

a22 � 1/n2
2

a33 � 1/n2
3

a23

a31

a12




�5.5�

Equation (5.5) is used to express the amount of distortion due to various effects [1].
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Nonzero ai are generated by various external fields. If the values of ai are
proportional to an external electric field, the distortion of the indicatrix is said to be
due to the Pockels effect. If the values of ai are proportional to the square of the
external electric field, this effect is known as the Kerr effect. If the values of ai are
proportional to the strain in the crystal, this effect is called the elastooptic effect.

5.2 ELECTROOPTIC EFFECTS

Recall the simple model used to illustrate the polarization in Figs. 4.1 and 4.2. Strictly
speaking, when an E field is applied, the resulting polarization is linearly proportional
to E only for low values of E. For high values of E, the relationship is nonlinear.
Likewise, for large E, the relationship between E and D is nonlinear. The dynamic
dielectric constant

� D dD

dE
�5.6�

is not constant. It depends on the value of E. The index of refraction n can be changed
with the addition of an applied electric field ε. This additional field ε can be a dc or
an ac field. The index of refraction may be expressed as

n D n0 C r�EC ε�C q�EC ε�2 C Ð Ð Ð

In this chapter, we are interested in the case where E is much smaller than the external
ε, so that n can be approximated as

n
.D n0 C rεC qε2 �5.7�

The term rε represents the Pockels effect, and the term qε2 represents the Kerr effect.
The Pockels and Kerr effects are experimentally separable because the Pockels effect
depends on the polarity of the applied field while the Kerr effect does not.

5.2.1 Pockels Electrooptic Effect

Pockels coefficients are used to quantitatively describe the Pockels effect. The concept
is that the change ai between the coefficients of the undistorted indicatrix and the

Notice some coefficients in Table 5.1 are designated by (S) or (T). When the crystal is
piezoelectric as well as electrooptic, the applied field creates strain in the crystal, which
in turn changes the index of refraction due to the elastooptic effect. This additional effect,
however, disappears if the external electric field varies faster than the frequency fc of
the mechanical resonance of the crystal. This condition of no strain is called “clamped,”
“nondeformed,” “strain free,” or the “S D 0 condition” and is designated by (S).

If the change of the external field is much slower than fc, the crystal deforms freely and
the elastooptic effect accompanies the electrooptic effect. The crystal is said to be “in an
unclamped condition” or “a stress-free T D 0 condition” and is designated by (T). When the
external field is a static field, the values marked with (T) are used.
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distorted indicatrix is a linear function of the applied external electric field,

ai D
3∑
jD1

rijεj �5.8�

where rij are the Pockels coefficients and εj are the components of the applied electric
field. Using Eq. (5.5), this can be expressed in matrix form as




a11 � 1/n2
1

a22 � 1/n2
2

a33 � 1/n2
3

a23

a31

a12




D




r11 r12 r13

r21 r22 r23

r31 r32 r33

r41 r42 r43

r51 r52 r53

r61 r62 r63



[ ε1

ε2

ε3

]
�5.9�

where ε1, ε2, and ε3 represent εx, εy , and εz. Table 5.1[3–7] lists Pockels coefficients
for a number of electrooptic materials (see boxed note). The pattern of the matrix
elements is determined by the symmetries of the crystal structure. Fortunately, many
matrix elements are either zero or identical and manipulations are greatly simplified.

The optic axis is often referred to as the Z axis or c axis meaning crystal axis. The
“crystal axis” here does not necessarily coincide with “crystal axis” in a crystallographic
sense. A biaxial crystal has two optic axes but has only one crystal (crystallographic)
axis. The axes perpendicular to the Z axis are referred to as the X and Y axes, and
normally capital letters are used.

The manner in which a crystal is sliced is called by its “cut.” Z-cut, for instance,
means that the crystal is sliced so that it has two parallel flat surfaces, both of which
are perpendicular to the Z axis. An illustration of a Y-cut crystal is shown at the top
of Fig. 5.2. In diagrams with more than one set of parallel surfaces, the cut is with
reference to the most closely spaced set of surfaces.

Example 5.1 Lithium niobate (LiNbO3) is an electrooptic crystal that is widely used
for integrated optics devices because of its large-valued Pockels coefficients. Let us
investigate the electrooptic effects with various orientations of the external electric field.
Find the cross section of the indicatrix cut by a plane perpendicular to the direction
of the wavenormal, or in short, the “cross-sectional ellipse” whose major and minor
axes are the only allowed directions of polarization (see Section 4.5.2). The incident
wavenormal is in the Z direction and a Y-cut LiNbO3 crystal is used. Consider the
following external electric fields:

(a) ε D 0.
(b) ε D εx.
(c) ε D εy .
(d) ε D εz.

Solution Since the direction of the wavenormal is along the z axis, the “cross-
sectional ellipse” is in the z D 0 plane. The expression for the “cross-sectional ellipse”
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Figure 5.2 The z D 0 cross section of the indicatrix of LiNbO3 when an external electric field is
applied in various orientations.

is found by setting z D 0 in Eq. (5.4). From Table 5.1, the matrix of Pockels coefficients
of lithium niobate is



a11 � 1/n2
0

a22 � 1/n2
0

a33 � 1/n2
e

a23

a31

a12




D




0 �r22 r13

0 r22 r13

0 0 r33

0 r51 0
r51 0 0

�r22 0 0



[ εx
εy
εz

]
�5.10�

(a) ε D 0. When no external field is present, from Eqs. (5.4) and (5.10), we have

x2

n2
0

C y2

n2
0

D 1 �5.11�

and the cross section is a circle.
(b) ε D εx. Only one cross-product term of Eq. (5.4) survives in the z D 0 plane,

and from Eq. (5.10) we have

x2

n2
0

C y2

n2
0

� 2r22εxxy D 1 �5.12�
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The product term creates the rotation of the axes. The product term can be removed
from Eq. (5.12) by rotating the coordinates with respect to the z axis. The expression
for the rotation of coordinates in two dimensions is[

x
y

]
D

[
cos � � sin �
sin � cos �

] [
x0
y0

]
�5.13�

where x0 and y0 are the new coordinates after rotation by �. Rotation of the coordinates
by 45° using Eq. (5.13) leads to

(
1

n2
0

� r22εx

)
x02 C

(
1

n2
0

C r22εx

)
y02 D 1 �5.14�

The first term is approximated as follows:

(
1

n2
0

� r22εx

)
x02 D



√

1 � r22n2
0εx

n0




2

x02

D


√

1 � �r22n2
0εx�

2

n0

√
1 C r22n2

0εx




2

x02

If r22n2
0εx − 1, the first term is approximated as

(
1

n2
0

� r22εx

)
x02 .D x02

[n0�1 C 1
2r22n2

0εx�]
2

D x02

�n0 C 1
2 r22n3

0εx�
2

�5.15�

This means the index of refraction in the x0 direction is larger than n0 by n D
1
2r22n3

0εx. A similar approximation is applicable to the second term in Eq. (5.14):

x02

�n0 C 1
2r22n3

0εx�
2

C y02

�n0 � 1
2r22n3

0εx�
2

D 1 �5.16�

The major axis is in the x0 direction and the minor axis is in the y0 direction.
(c) ε D εy . From Eqs. (5.10) and (5.4) with z D 0, the ellipse becomes

(
1

n2
0

� r22εy

)
x2 C

(
1

n2
0

C r22εy

)
y2 D 1 �5.17�

which can be approximated in a manner similar to that used to obtain Eq. (5.15).
Equation (5.17) becomes

x2

�n0 C 1
2r22n3

0εy�
2

C y2

�n0 � 1
2r22n3

0εy�
2

D 1 �5.18�
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The major and minor axes are in the x and y directions, respectively.
(d) ε D εz. From Eqs. (5.10) and (5.4) with z D 0, the ellipse becomes

x2
(

1

n2
0

C r13εz

)
C y2

(
1

n2
0

C r13εz

)
D 1

which can be approximated as

x2

�n0 � 1
2r13n3

0εz�
2

C y2

�n0 � 1
2r13n3

0εz�
2

D 1 �5.19�

The cross section is a circle, as in the case of zero field, but the circle has shrunk. All
results are summarized in Fig. 5.2. �

Example 5.2 For each of the configurations (b)–(d) in Example 5.1, design a voltage-
controlled (I) phase shifter and (II) retarder. With both designs, specify the direction
of polarization of the incident wave and find the expressions for the angle of the phase
shift of the phase shifter, and the amount of retardation (amount of phase difference
between the two orthogonal components of the transmitted light) of the retarder. A
Y-cut lithium niobate crystal with dimensions wð dð h in the x, y, and z directions
is used. The control voltage is V.

Solution The summary in Fig. 5.3 will be referred to often.
(I) Phase Shifter. The directions of polarization of the incident wave have to be in

the directions of the major and minor axes of the cross-sectional ellipse.

P'

P'

P

P
P

R'

R'

y'

O O O

R

R

x x

(a)  ε = εx (b)  ε = εy (c)  ε = εz

x

y y

z

y

x'

εx

εy

w d

h
εz

Figure 5.3 The directions of polarization of the incident wave. OP and OP0 correspond to the phase
shifter, and OR and OR0 correspond to the retarder.
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(b) ε D εx. The axes of the cross-sectional ellipse are rotated by 45°. The polarization
of the incident wave has to be parallel to either the x0 or the y0 axis.

From Eq. (5.16), the phase shift  x0,y0 is

 x0,y0 D 2!

"

(
n0 š 1

2r22n
3
0
V

w

)
h �5.20�

The plus sign on the right-hand side of Eq. (5.20) corresponds to polarization in the
x0 direction, while the minus sign corresponds to the y0 direction.

(c) ε D εy . The allowed directions of polarization are in the directions of the x and
y axes. The phase shift is, from Eq. (5.18),

 x,y D 2!

"

(
n0 š 1

2r22n
3
0
V

d

)
h �5.21�

(d) ε D εz. The direction of polarization can be any direction and the amount of the
phase shift is, from Eq. (5.19),

 D 2!

"

(
n0 � 1

2r13n
3
0
V

h

)
h �5.22�

It should be noted that the voltage-dependent term in the expression for  is independent
of h and does not increase with the length of the crystal as in the previous two cases;
it is solely determined by the applied voltage V. Optically transparent electrodes such
as tin dioxide (SnO2) coatings have to be used.

(II) Retarders. The retarder is a device that creates a differential phase shift between
the two orthogonal components of the transmitted light. It is usually used either to
rotate the direction of polarization or to convert linearly polarized light into elliptically
polarized light or vice versa (see Chapter 6).

The direction of polarization of the incident wave is most often set at š45° to the
allowed directions of polarization so that the amplitude of the incident field is equally
decomposed into the two allowed directions of polarization.

(b) ε D εx. In order to equally excite the two allowed polarization directions, the
direction of the incident polarization is arranged along either the x or y axis. The
amount  of retardation of the phase of the E0

y wave with respect to that of E0
x is,

from Eq. (5.16),

 D �2!

"

(
r22n

3
0
V

w

)
h �5.23�

(c) ε D εy . The direction of polarization of the incident wave is at š45° to the x
axis. The amount of retardation is, from Eq. (5.18),

 D �2!

"

(
r22n

3
0
V

d

)
h �5.24�

For both ε D εx and ε D εy , the amount of retardation is proportional to h as well as V.
(d) ε D εz. Since the elliptic cross section is a circle, the retarder cannot be fabricated

with this configuration. �
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An electrooptic amplitude modulator can be fabricated by combining the retarder in
(a) with a set of crossed polarizers, as shown in Fig. 5.4. The incident light is polarized
in the x direction. The output field Ey is the sum of the y components of E0

x and E0y.
The variable retarder varies the relative phase between E0

x and E0
y and hence amplitude

modulates the output Ey . The quantitative treatment is explained in Example 5.3.

Example 5.3 A Y-cut lithium niobate crystal with an external field in the x direction,
such as shown in Fig. 5.3a, is used as an amplitude modulator, as shown in Fig. 5.4. The
length of the crystal in the z direction is h. The applied electric field is εx D εm cosωmt,
where εm D Vm/w. It is assumed that 1/ωm is much longer than the time that the light
propagates through the crystal and the external field does not change appreciably during
the transmission. Find the expression for the light intensity at the output of the prism
analyzer.

Solution From Eq. (5.23) the retardation angle  is

 D �2!

"
�r22n

3
0εm cosωmt�h �5.25�

The incident lightwave is polarized horizontally and is 45° from the x0 axis and Ex0 D
�Ey0 D �1/

p
2�E0, as indicated in Fig. 5.5a. At the output there is a phase retardation

of  between light amplitudes Ex0 and Ey0 .

Ex0 D 1p
2
E0 cos��ωt� �5.26�

Ey0 D � 1p
2
E0 cos��ωt C� �5.27�

where ω is the angular frequency of the incident lightwave.
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LiNbO3
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y
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Ex ′

Ey ′

x

Polarizer
(transmission
axis vertical)
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Ey

z

Ex

x

y

0

Figure 5.4 Electrooptic amplitude modulator.
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Ey'
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Figure 5.5 Vector diagram of the input and output of an amplitude modulator. (a) Input. (b) Output.

The output from the analyzer is the addition of the E-field components parallel to
the y direction of the polarizer.

Ey D Ex0p
2

C Ey0p
2

and

Ey D E0

2
[cosωt � cos�ωt ��]

D E0 sin


2
sin

(
ωt � 

2

)
�5.28�

Hence, the output amplitude is proportional to sin �/2�, and the output light intensity
I for an input light intensity I0 is

I D I0 sin2 

2
�5.29�

Insertion of Eq. (5.25) into (5.29) gives the final answer as plotted in Fig. 5.6. The
output I is highly nonlinear with  but this can be minimized by biasing  to the point
where it is most linear. (See Problem 5.2.) For an in-depth treatment of the retarder
see Chapter 6.

It may be added that the curve of Fig. 5.6 lets you conversely find the applied field
εx from the measured value of I/I0. Such a LiNbO3 slab can be used as an electrooptic
probe tip for measuring the electric field εx with minimum disturbance to the original
electric field [7]. �

Example 5.4 The expression for the “cross-sectional ellipse” under an external field
often takes the form

Ax2 C Cy2 C 2Bxy D 1 �5.30�
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Figure 5.6 Output from the amplitude modulator.

By rotating the coordinates x and y with respect to the z axis, find the directions
and amplitudes of the major and minor axes of the ellipse: (a) for the special case of
A D C, and (b) for the general case.

Solution After rotation of the coordinates, we will find the condition that the x0y0
cross-product term vanishes. Insertion of Eq. (5.13) into (5.30) and after some mani-
pulation leads to

�A cos2 � CC sin2 � C B sin 2��x02

C �A sin2 � CC cos2 � � B sin 2��y02 �5.31�

C [�C� A� sin 2� C 2B cos 2�]x0y0 D 1

The angle � of rotation of the coordinates that makes the x0y0 term disappear is

tan 2� D 2B

A� C
�5.32�

which determines the orientation of the new coordinates, as shown in Fig. 5.7.
Next, the lengths of the major and minor axes are calculated for the two cases.
(a) For the special case of A D C, � becomes

� D 45°

and Eq. (5.31) becomes

�AC B�x02 C �A� B�y02 D 1 �5.33�

(b) For the general case, by rewriting A and C as

A D aC d

C D a� d
�5.34�
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y ′
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Figure 5.7 The angle of inclination � of the major (or minor) axis of Ax2 C Cy2 C 2Bxy D 1 is
tan 2� D 2B/�A � C�.

or conversely,

a D AC C

2

d D A� C

2

both Eqs. (5.31) and (5.32) can be simplified. Equation (5.32) becomes

tan 2� D B

d
�5.35�

Using Eq. (5.34) to express A and C in terms of a and d, and then rewriting sin 2� and
cos 2� in terms of B and d by means of Eq. (5.35), a simpler expression for Eq. (5.31)
is obtained as

�a C
√
B2 C d2�x02 C �a �

√
B2 C d2�y02 D 1 �5.36�

One can obtain an approximate expression for Eq. (5.36) by putting

a D 1

N2

and making use of the procedure used to obtain Eq. (5.15):

x02

�N� 1
2N

3
p
B2 C d2�2

C y02

�NC 1
2N

3
p
B2 C d2�2

D 1 �5.37�
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The lengths of the major and minor axes are given by(
Nš 1

2
N3

√
B2 C d2

)

The special case A D C corresponds to d D 0 in the above expressions. �

5.2.2 Kerr Electrooptic Effect

The Kerr electrooptic effect is similar to the Pockels effect but the change ai between
the coefficients of the undistorted and distorted indicatrix is proportional to the second
order of the applied field. There are six different combinations of ε1, ε2, and ε3 that
make up the second order field. Equation (5.5) is related to the quadratic electrooptic
coefficients or Kerr coefficients as



a11 � 1/n2
1

a22 � 1/n2
2

a33 � 1/n2
3

a23

a31

a12




D




q11 q12 q13 q14 q15 q16

q21 q22 q23 q24 q25 q26

q31 q32 q33 q34 q35 q36

q41 q42 q43 q44 q45 q46

q51 q52 q53 q54 q55 q56

q61 q62 q63 q64 q65 q66







ε2
1

ε2
2

ε2
3

ε2ε3

ε3ε1

ε1ε2




�5.38�

Examples of materials exhibiting the Kerr effect include such electrooptic crystals
as barium titanate (BaTiO3), potassium dihydrogen phosphate (KDP or KH2PO4), and
ammonium dihydrogen phosphate (ADP or NH4H2PO4). Certain liquid materials like
benzene (C6H6), nitrobenzene (C6H5NO2), carbon disulfide (CS2), and water (H2O)
display the Kerr electrooptic effect. When an electric field is applied, the liquid material
behaves like a uniaxial crystal with its optic axis along the applied electric field.

Like Pockels coefficients, many matrix elements vanish and the manipulation is
much simpler than it looks. Kerr coefficients of isotropic media such as liquids take
on the simple form



q11 q12 q12 0 0 0
q12 q11 q12 0 0 0
q12 q12 q11 0 0 0
0 0 0 1

2 �q11 � q12� 0 0
0 0 0 0 1

2 �q11 � q12� 0
0 0 0 0 0 1

2 �q11 � q12�




�5.39�

and n1 D n2 D n3 D n.
Let us derive the expression for the indicatrix when the external field ε D εz is

applied to a Kerr liquid contained in a rectangular cell. Applying Eq. (5.39) to (5.38),
the constants aij for the ellipsoid are found. With ε D εz, we have

a11 D a22 D 1

n2
C q12ε

2
z

a33 D 1

n2
C q11ε

2
z

a23 D a31 D a12 D 0
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Table 5.2 Kerr constants of liquids

Chemical Index of Kerr Constant K Wavelength
Substance Symbol Refraction (m/V2) (µm)

Nitrobenzene C6H5NO2 1.501 2.44 ð 10�12 0.59
Water H2O 1.333 5.1 ð 10�14 0.59
Carbon

disulfide CS2 1.619 3.18 ð 10�14 0.63
Benzene C6H6 1.496 4.14 ð 10�15 0.63
Carbon

tetrachloride CCl4 1.456 7.4 ð 10�16 0.63

Using the approximation procedure of Eq. (5.15), the expression for the indicatrix
becomes

x2

�n� 1
2q12n3ε2

z �
2

C y2

�n� 1
2q12n3ε2

z �
2

C z2

�n� 1
2q11n3ε2

z �
2

D 1 �5.40�

Equation (5.40) is the expression for the indicatrix of a uniaxial crystal with the optic
axis in the z direction. Thus, the optic axis is in the direction of the external field. The
indices of refraction for the ordinary and extraordinary waves are

n0 D n� 1
2q12n

3ε2
z

ne D n� 1
2q11n

3ε2
z

�5.41�

The difference between the indices of refraction for ordinary and extraordinary
waves defines the Kerr constant K (not Kerr coefficients) of the liquid. From Eq. (5.41),
the difference between refractive indices is

n0 � ne D K"ε2

where the Kerr constant is defined as

K D 1

2"
�q11 � q12�n

3 �5.42�

and where " is the wavelength of the light in vacuum. Table 5.2 shows the Kerr
constants of various liquids. For example, when the external field εz D 3 ð 106 V/m
is applied to a nitrobenzene Kerr cell of thickness 1 cm, the retardation is

2!

"
l�n0 � ne� D 2!lKε2

D 2!�0.01��2.44 ð 10�12��3 ð 106�2

D 1.38 rad

5.3 ELASTOOPTIC EFFECT

A change in the index of refraction takes place when a crystal is physically deformed.
Such an effect is called the elastooptic effect. When the strain is created by an acoustic
wave, it is sometimes called the acoustooptic effect.
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So that the effect can be quantitatively expressed, the strains must clearly be defined.
There are two kinds of strain — principal and shearing strains. As shown in Fig. 5.8a,
when an elemental volume dx dy dz is deformed by dU in the positive x direction by
an external force, the strain in the x direction is defined as

Sxx D ∂U

∂x
�5.43�

and for deformation dV in the positive y direction, the strain is

Syy D ∂V

∂y
�5.44�

Similarly, for deformation dW in the positive z direction, the strain is

Szz D ∂W

∂z
�5.45�

These three strains are called the principal strains.
Shearing strain causes a change in the angle x0y of an edge with the application of

a force. Referring to Fig. 5.8b, the changes in angles �1 and �2 are

tan �1 D ∂V

∂x

tan �2 D ∂U

∂y

�5.46�

The shearing strain Sxy is defined as

Sxy D 1
2 ��1 C �2�

and is approximated as

Sxy D 1

2

(
∂V

∂x
C ∂U

∂y

)
�5.47�

It is important to remember that dU, dV, and dW are positive when they are in the
positive x, y, and z directions.

For instance, when the square is simply rotated as shown in Fig. 5.8c, the shearing
strain is absent. In this case, note that ∂U/∂y is a negative quantity and cancels ∂V/∂x
and Sxy D 0.

Similarly, the two other shearing strains are defined as

Syz D 1

2

(
∂V

∂z
C ∂W

∂y

)
�5.48�

Sxz D 1

2

(
∂U

∂z
C ∂W

∂x

)
�5.49�

Sxx, Syy , Szz, Syz, Sxz, and Sxy are represented by subscripts 1 to 6 as S1, S2, S3, S4,
S5, and S6, respectively.



ELASTOOPTIC EFFECT 319

y

dx

dU

∂U
∂x

> 0

∂V
∂x

> 0

∂V
∂x

> 0

∂U
∂y

> 0

∂U
∂y

< 0

x

x

x

(a)     Sxx

(b)     Sxy

(c)     Sxy = 0

y

y

q1

q1

q2

0

0

0

q2

Figure 5.8 Definition of principal strain Sxx and shearing strain Sxy.

The change in the indicatrix, Eq. (5.5), is now represented using elastooptic constants
as 



a11 � 1/n2
1

a22 � 1/n2
2

a23 � 1/n2
3

a23

a31

a12




D




p11 p12 p13 p14 p15 p16

p21 p22 p23 p24 p25 p26

p31 p32 p33 p34 p35 p36

p41 p42 p43 p44 p45 p46

p51 p52 p53 p54 p55 p56

p61 p62 p63 p64 p65 p66







S1

S2

S3

S4

S5

S6


 �5.50�

Matrices of the elastooptic constants for commonly used materials are tabulated in
Table 5.3.
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Example 5.5 A transverse acoustic wave is launched in a crystal in the x, y, and z
directions as shown in Fig. 5.9.

(a) Identify the predominant shearing strains in each of the three cases, and desig-
nate this strain by one of S1, S2, . . . , S6.

(b) Are there any other directions of propagation of the transverse acoustic wave
that create the same shearing strains as those in Fig. 5.9?

Solution

(a) A useful mnemonic for identifying shearing strain is pinching a rubber eraser
with a cross mark on its side, as shown in Fig. 5.10. The deviation of � from
90° identifies the presence of a shearing strain. The shearing strain is in the
plane of the cross of the eraser. Now imagine the pinched eraser to coincide
with the crest of an acoustic wave in Fig. 5.9. The shearing strain in Fig. 5.9a
takes place in the y–z plane and it is S4. The strain in Fig. 5.9b is S5 and that
in Fig. 5.9c is S6.

(b) The propagation of the transverse acoustic wave in the z direction, which is
obtained by rotating the wave in Fig. 5.9a by 90° around the x axis, also creates
S4. The propagation in the x direction, which is obtained by rotating the wave

x x x

yy

y

z z

z

(a) (b) (c)

Figure 5.9 Identification of shearing strains due to transverse acoustic waves in a crystal.

q deviates from 90° in 
the plane of shear strain

Rubber
eraser

Plane of
shear
strain

q = 90°

q ≠ 90°

Figure 5.10 Identification of shearing strain at your fingertips.
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in Fig. 5.9b by 90° around the y axis, also creates S5. The propagation in the
y direction, which is obtained by rotating the wave in Fig. 5.9c by 90° around
the z axis, also creates S6. �

Example 5.6 When an acoustic wave is launched into a crystal that displays the
elastooptic effect, the index of refraction of the crystal is spatially modulated by the
periodic strains caused by the acoustic wave. The incident light into the crystal is
diffracted by the modulation of the index of refraction. The direction of diffraction
is changed by changing the period of modulation. Such a light deflector is called an
acoustooptic light deflector. If the acoustic wave is launched on the surface of the
crystal, the device is called a surface acoustic wave (SAW) light deflector. The surface
acoustic wave is generated by interdigital electrodes, such as shown in Fig. 5.11. Strain
is generated by the electric field set up by a pair of electrodes because of the piezo-
electric effect. The generated longitudinal surface acoustic wave propagates along the
crystal.

If a Y-cut tellurium dioxide (TeO2) crystal is used for the SAW light deflector, what
are the directions of polarization and propagation of the incident light that require
minimum power to the interdigital transducer? For the ideal situation, assume that the
lightwave and the surface acoustic wave are launched in the same plane.

Solution Referring to Table 5.3, the largest elastooptic coefficient of TeO2 is p13 D
0.34. From the matrix, Eq. (5.50), S3 has to be nonzero to make use of p13. Thus, a
longitudinal acoustic wave has to be launched in the z direction of the crystal.

The change in the indicatrix due to S3 is calculated using Table 5.3 and Eq. (5.50)
with S D �0, 0, S3, 0, 0, 0�. With approximations as were used in Eq. (5.15), the

x O

y
z

Incident
light

Longitudinal
surface acoustic
wave

Diffracted
light

Interdigital
transducer that generates
a surface acoustic wave by

the piezoelectric effect

+
−

q

Figure 5.11 SAW light deflector.
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indicatrix becomes

x2

�n0 � 1
2n

3
0p13S3�2

C y2

�n0 � 1
2n

3
0p13S3�2

C z2

�ne � 1
2n

3
ep33S3�2

D 1 �5.51�

All three major axes of the indicatrix change with S3, but the x and y axis change
the most. Referring to the indicatrix shown in Fig. 5.12, various polarizations and
propagation directions are considered for a Y-cut crystal.

When the light is polarized in the x direction, the direction of the light propagation
has to be in the y–z plane. This means the light has to propagate along the z direction,
otherwise the light would pass through the crystal. For z propagation, � in Fig. 5.11
must be 0°.

When the light is polarized in the y direction, the direction of the propagation of
the light is in the x–z plane. In this case the deflected light stays in the x–z plane.
This polarization gives more flexibility in reflection angle in that � in Fig. 5.11 need
not be 0°.

It is also possible to use the e-wave, which is polarized in the x–z plane, as shown in
Fig. 5.12, but this is less desirable because the effective index of refraction is dependent
on the angle of deflection.

The acoustic power needed to produce S is approximately

P / jSj2 �5.52�

(stress is proportional to S and power is the product of the force and displacement).
Thus, if one were to use the next biggest coefficient p33 D 0.24, the driving acoustic
power has to be �0.34/0.24�2 D 2 times larger. �

e-Wave

X

Elliptic
cross section o-Wave

Y

Z

k

Direction of
wavenormal

Optic
axis

D1

D2

TeO2 crystal

Figure 5.12 Indicatrix of a TeO2 SAW light deflector.
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5.4 MAGNETOOPTIC EFFECT

Magnetooptic effects cause the optical properties of a medium to change when the
medium is subjected to a magnetic field. The Faraday effect is the most widely used
magnetooptic effect. Another magnetooptic effect is the Cotton–Mouton effect. In
order to gain some insight into how magnetic fields can alter the optical properties of
a material, the Faraday effect will be explained using a classical model.

5.4.1 Faraday Effect

Using the classical model of precession of electron spin due to an external magnetic
field, the Faraday effect will be phenomenologically explained [8]. As an electron
orbits the nucleus, it spins on its own axis. Since the electron is charged, the spinning
electron creates a small current loop and possesses a magnetic moment m. If the
magnetic moment is under the influence of an external dc magnetic field, the magnetic
moment tends to line up with the external magnetic field and a force is applied to
the magnetic moment as indicated by F in Fig. 5.13. Due to the applied force F, the
spinning electron with an angular momentum starts to precess around the external
magnetic field Hdc. It is analogous to a precessing top. When the axis of a top is tilted
and the gravitational force attempts to change the direction of the angular momentum
of the top, the top starts precessing. The precession of the magnetic moment of the
spinning electron is the source of the Faraday effect.

When a circularly polarized wave is incident into a medium, the magnetic perme-
ability that the wave sees depends on the sense of the circular polarization. The
propagation constant k for a circularly polarized wave that propagates along Hdc is [8]

k2 D ω2��4šK� �5.53�

where � is the dielectric constant, 4 is the magnetic permeability in the absence of the
precession or in the absence of Hdc, and K is the difference in magnetic permeability

q
0

0

Source

Vertically
polarized

Hdc

m
Tilt

Faster

F

Direction of
precession

Gyro medium

Emergent
light

Slower

Figure 5.13 Gyro effect of the electron spin due to an external field Hdc.



OPTICAL ISOLATOR 327

caused by the precession. K in general is a complex number. The positive sign corre-
sponds to circular polarization whose sense is in the same direction as that of the
precession, and the negative sign means that the sense of the circular polarization is
opposite to that of the precession.

When the incident light field is linearly polarized, it can be decomposed into two
circularly polarized waves of equal magnitude but having the opposite sense of circular
polarization. Any effect causing the propagation constants for these two circularly
polarized component waves to differ results in a rotation of the direction of the emergent
linearly polarized wave, as illustrated in Fig. 5.13. This rotation of the emergent linearly
polarized wave is called the Faraday effect. An interesting and useful property of the
Faraday effect is that the direction of the rotation of the linearly polarized light depends
only on the direction of precession, which is determined by the direction of the applied
magnetic field; it does not depend on whether the light is traveling from left to right,
or right to left. The rotation of the linearly polarized light is always in the same
direction as the precession. To be more specific, in the example shown in Fig. 5.14,
the direction of polarization rotates from vertically upward to the horizontal direction
after passing through the Faraday medium of an appropriate length from the left to the
right in Fig. 5.14a. If, however, the direction of propagation is reversed and the light
passes from the right to the left, as in Fig. 5.14b, the direction of polarization points
downward rather than upward. This is called the nonreciprocity of the Faraday effect.
This property is used for fabricating optical isolators that will be explained further in
the next section.

The quantitative expression for the rotation angle  of the polarization is

 D VHdc · l �5.54�

where V is the Verdet constant, usually expressed in units of degrees/(oersted-cm), Hdc

is the external dc magnetic field, and l is the path of light inside the medium. Both
Hdc and l are vector quantities.

5.4.2 Cotton-Mouton Effect

As indicated by Eq. (5.54), the Faraday effect disappears when the direction of the
dc magnetic field is perpendicular to that of the light propagation, but birefringence
can be observed under these conditions with some substances like nitrobenzene. This
birefringence observed in a liquid like nitrobenzene is attributed to the Cotton–Mouton
effect and is proportional to the square of the applied dc magnetic field. The substance
behaves like a uniaxial crystal with its optic axis along the external magnetic field.
When the light is polarized in the direction of Hdc it behaves like an e-wave, and when
it is polarized perpendicular to the plane set by the direction of the light propagation
and the external magnetic field, the wave behaves like an o-wave. This resembles the
Kerr effect with a liquid substance.

5.5 OPTICAL ISOLATOR

An optical isolator is a device that allows transmission of light in one direction while
it suppresses light transmission in the opposite direction. Optical isolators are used to
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Direction of light

Direction of light

(a)

(b)

(c)

Always in the direction
of precession regardless
of the direction of propagation

Magneto
optic
medium

Hdc

0

Directions ofpropagationof light

Figure 5.14 Rotation of the direction of polarization due to the Faraday effect. (a) Light from the left
to the right. (b) Light from the right to the left. (c) Direction of the rotation.

suppress the effects of reflected light. For example, the insertion of an isolator between
the laser diode and the rest of the system cuts down on the light reflected back into
the laser, and not only stabilizes the laser operation but also substantially reduces the
laser noise.

There are two types of optical isolators: one whose performance is influenced by
the direction of polarization of the incident light, and one whose performance is inde-
pendent of the polarization of the incident light.

5.5.1 Polarization-Dependent Optical Isolator

Figure 5.15a shows the layout of the polarization-dependent optical isolator. The mag-
netooptic material is sandwiched between the polarizer and analyzer prisms. The
direction of the polarization of the analyzer is tilted by 45° from that of the polar-
izer. Referring to Fig. 5.15b, the vertically polarized incident wave can pass through the
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Support rod

S
N

Hdc

2.1 mm

YIG
sphere

YIG

Polarizer
prism

(vertical)

Analyzer
prism
(45°)

45°

45°

0°

90°

(a)

(b)

(c)

YIG

Analyzer

AnalyzerNo light

to the left

Polarizer
(transmission
axis vertical)

(transmission
axis)

Figure 5.15 Optical isolator. (a) Construction of an optical isolator. (b) Light in the forward direction.
(c) Light in the backward direction. The arrows in the polarizer and analyzer indicate the transmission
axis.

polarizer with minimum attenuation and enters the magnetooptic material. The Faraday
effect causes the direction of the polarization to rotate by 45°. Since the analyzer is also
set at 45°, the emergent light from the magnetooptic material can proceed through the
analyzer with minimum attenuation into the optical system. Referring to Fig. 5.15c,
the reflected light from the optical system passes through the analyzer and enters
the magnetooptic material, where the Faraday effect again causes the direction of
polarization to rotate by 45°. As was discussed in Section 5.4.1, the sense of rotation
of the polarization is independent of the direction of light propagation so that light
passing through twice (once in the forward direction and once in the reverse direction)
experiences a total rotation of 90°.

On reaching the polarizer, the reflected light has its polarization in the direction
perpendicular to the transmission axis of the polarizer and cannot go through the
polarizer toward the source. Thus, the light source is isolated from the reflected light
from the outside system.

Ferromagnetic substances like yttrium iron garnet (YIG), Y3Fe5O12, display a strong
Faraday effect because, as a characteristic of ferromagnetism, the electron spins are
all pointed in the same direction, and the effect of the precession is significantly
accentuated. The Verdet constant is much higher than in other magnetooptic substances
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like arsenic trisulfide (AsS3), soda lime silicate, or terbium (Tb)-doped paramagnetic
glass. Another feature of YIG is that the Faraday effect is saturated at 1780 gaussŁ and
there is no need to accurately control the magnetic field as long as the field is stronger
than this value. The Verdet constant with a saturated magnetic field is expressed in units
of degrees/cm and the value for YIG is 220 degrees/cm. A YIG sphere with a diameter
as small as 2.1 mm is enough to give a 45° rotation at a wavelength of " D 1.3 µm [9].
It should, however, be noted that the Verdet constant is a strong function of wavelength
and decreases as the square of the wavelength.

The optical isolator shown in Fig. 5.15 uses a YIG sphere. The YIG sphere is
housed in a doughnut-shaped permanent magnet that can provide a magnetic field
much stronger than the saturation magnetization. A polymer-bonded rare earth magnet
is conveniently used because it is easily machined.

5.5.2 Polarization-Independent Optical Isolator

During light transmission in an ordinary optical fiber, the direction of polarization
fluctuates. When an optical isolator [10,11] is to be used in such a system, either
the isolator has to be the polarization-independent type, or the polarization has to be
stabilized by means of polarization-maintaining fiber or polarization controllers. In this
section, the polarization-independent optical isolator is explained.

The polarization-independent isolator combines the birefringence of prisms and the
nonreciprocity of the Faraday rotator. Figure 5.16a shows the layout of the components.
The Selfoc lens (graded index lens, or GRIN lens) converts the output of the fiber into a
plane wave. The input as well as output prisms P1 and P2 are made out of birefringent
crystal. The prisms have the same shape, but the directions of their optic axes are
tilted from each other by 45°. The Faraday rotator in the center rotates the polarization
directions of both forward and backward waves by 45°. The direction of rotation is the
same for forward and backward waves.

Let us first follow the path of the forward wave propagating from the left to the
right in Fig. 5.16b. The plane wave from the Selfoc lens is arbitrarily polarized. Let it
be decomposed into the e-wave and o-wave components of crystal prism P1. The prism
being birefringent, the e-wave sees the refractive index ne and the o-wave sees n0, and
each is refracted into different directions by prism P1. The Faraday rotator rotates the
polarization directions of both the o-wave and the e-wave by 45°, and the direction of
rotation is the same for both waves. Since the optic axis of P2 is also rotated by 45°,
the o-wave still sees refractive index n0 in P2, and likewise the e-wave sees refractive
index ne in P2. Both waves emerge from P2 parallel to the axis of the Selfoc lens and
are focused properly into the center of the core of the output fiber F2 for transmission.

The blockage of the backward wave, as illustrated in Fig. 5.16c, will now be
explained. The backward wave is also decomposed into components parallel and
perpendicular to the tilted optic axis of prism P2, which are the e-wave and o-wave,
respectively. The Faraday rotator rotates the polarization directions of both waves
further by 45°. For the forward wave, the Faraday rotation compensates for the tilt
of the optic axis of prism P2; but for the backward wave, the tilt and the Faraday
rotation do not compensate each other. The backward o-wave from P2 is rotated 90°

Ł The magnetic field of a small magnet used for posting memo papers on a refrigerator door is about 1000
gauss.
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Figure 5.16 Principle of operation of a polarization-independent isolator. (a) General layout.
(b) Passage of forward light. (c) Blockage of backward light.

with respect to the optical axis of P1 and sees the refractive index ne in P1. Similarly,
the backward e-wave from P2 sees the refractive index n0 in P1. Upon emerging from
P1, the backward waves are not parallel to the axis of the Selfoc lens and cannot be
focused properly onto the core of fiber F1. The decrease in coupling into fiber F1

for slanted rays is significant. A 1° slant angle from the optical axis causes a 45-dB
decrease in the coupling power. A ratio of forward to backward waves of over 35 dB
is obtainable by this type of isolator.

5.6 PHOTOREFRACTIVE EFFECT

When a fringe pattern of sufficient intensity impinges on a photorefractive medium,
a phase grating is formed in the medium with an index of refraction profile that
follows the intensity distribution of the fringe pattern. This grating persists even after
the incident fringe pattern has been removed, as long as the crystal is kept in low
light levels. The phase grating is erasable with a floodlight illuminating all directions.
After it is erased, the same procedure can be repeated with minimum fatigue. Such
an effect is called the photorefractive effect and is used as a means of recording real-
time holograms, for producing phase conjugate mirrors [12,13] (see Chapter 8), and for



332 OPTICAL PROPERTIES OF CRYSTALS UNDER VARIOUS EXTERNAL FIELDS

optical communication applications such as an energy converter of an optical amplifier.
Photorefractive crystals include lithium niobate (LiNbO3), barium titanate (BaTiO3),
gallium arsenide (GaAs), bismuth silicon oxide (BSO, Bi12SiO20), bismuth germanium
oxide (BGO, Bi12GeO20), and some kinds of liquid crystals.

A heuristic explanation of the photorefractive effect is as follows. The photorefrac-
tive effect is due to the local electrooptic effect. The illuminating light frees electrons
from the orbits of the atoms in the crystal, and the freed electrons disturb the electrical
neutrality and locally establish an electric field. The electric field, in turn, causes
changes in the index of refraction due to the electrooptic effect.

A slightly more detailed explanation will be attempted using Figs. 5.17 and 5.18.
When two coherent light beams R and S interfere inside a photorefractive crystal, the
two beams generate a fringe pattern as shown in Fig. 5.17 that is responsible for writing
in the phase grating. Figure 5.18 illustrates the sequence of events in the crystal after
illumination by the fringe pattern. Unlike electrons that were freed out of the orbits of
the atoms, the atoms (ions) are locked in the crystal and are immobile. Thus, atoms
whose electrons have been lost becomes centers of ý charges. The fact that these
charges are immobile plays an important role. Even though the freed electrons move
through the crystal (under a diffusion force), their movement is not completely free
because of the electric field established by the immobile ý charges. The immobile ý
charges attract the electrons and try to pull the electrons back. Such a force of attraction
is called a drift force. The drift force and the diffusion force are opposed. The free
electrons redistribute themselves to an equilibrium where these two opposing forces
balance. The equilibrium distribution of the mobile negative charges and the immobile
ý charges is something like that shown in Fig. 5.18a. (Immobile charges are circled).

Below the picture of Fig. 5.18a, the corresponding spatial distributions of various
quantities are presented. The curve in Fig. 5.18b shows the intensity distribution of the
incident light fringe pattern. The curve in Fig. 5.18c represents the spatial distribution
of the charge in the crystal. Electrons are piled up in the dark regions. This is as if the
electrons are swept away into the dark regions by a fly swatter, just as cockroaches
hide themselves in the shade. The curve in Fig. 5.18d represents the electric field

Light intensity
maxima

x

S

R

z

Photorefractive
medium

Figure 5.17 Fringe pattern projected into a photorefractive substance by R and S beams of light.
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Figure 5.18 Illustration of the photorefractive effect.
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distribution ε, which is caused by the spatial modulation of the charge. Finally, the
curve in Fig. 5.18e represents the change in the index of refraction n, resulting from
the modulated ε field in Fig. 5.18d due to the electrooptic effect. This n persists
as a phase grating. Comparing graphs of Figs. 5.l8b and 5.l8e, one sees that the spatial
modulation n of the index of refraction is shifted from that of the light intensity
pattern by one-quarter period of the light intensity pattern or by "/8.

The following is a summary of the observed properties of the photorefractive effect.

1. The photorefractive effect increases with an increase in the spatial frequency of
the light fringe pattern.

2. The photorefractive effect is at its maximum when the crystal axis is normal to
the planes of constant index of refraction; namely, the crystal axis is along the
x direction in Fig. 5.18a.

3. The longer the wavelength of the floodlight is, the longer time it takes to erase
the phase grating.

4. A dc external electric field in the direction of the crystal axis enhances the
photorefractive effect.

5. Even when the intensities of the R and S beams are made equal at the input to the
crystal, in general, the intensities are not equal at the output of the crystal. This
is the result of a transfer of energy between the two beams inside the crystal.

Observed Properties 4 and 5 are the principle of operation of an optical amplifier
based on the photorefractive effect and will be explained in more detail in the next
section.

5.7 OPTICAL AMPLIFIER BASED ON THE PHOTOREFRACTIVE EFFECT

There are two major types of optical amplifiers: one is based on the transfer of light energy
in a photorefractive medium, while the other is an erbium-doped fiber amplifier or a laser
diode at the verge of lasing. The former type will be explained here while the latter in
Chapter 14. The optical amplifier described here uses the enhanced photorefractive effect
produced by an external field combined with the transfer of light energy in the crystal.
These properties will be explained separately and then combined afterward.

5.7.1 Enhanced Photorefractive Effect by an External Electric Field

An external electric field is applied to the photorefractive medium shown in Fig. 5.19a.
The diffusion force is not influenced by the external field but the drift force is. As a
result, the equilibrium distribution shown in Fig. 5.18a is upset. Since the ý charges
are immobile, the electrons are pushed by the external field, and the distribution of
the charges will become somewhat like that shown in Fig. 5.19a. Note the spacings
between ý and � in Fig. 5.19a. This results in an increase in the local electric field
ε and enhances the amount of n. The drift of free electrons due to the external field
is primarily responsible for the formation of the phase grating. When an external field
aids the drift force as in Fig. 5.19a, the positions of the maxima of n coincide very
nearly with those of the light fringe pattern, as indicated in Figs. 5.19b and 5.19c. The
quarter-period shift that was seen in Fig. 5.18, however, starts to diminish and results
in a change in the efficiency of the energy transfer.
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Figure 5.19 Photorefractive effect with an external dc electric field.

5.7.2 Energy Transfer in the Crystal

The amount of energy transfer between the R and S beams within the crystal critically
depends on the relative position between the fringe pattern of the incident beams and
the photorefractive phase grating in the crystal. In order to study the effect of the
relative position, let us first assume that the maxima of the fringe pattern coincide with
the established n grating as shown in Fig. 5.20a. The origin of the coordinates is
taken at the fringe maximum where the two waves R0 and S0 are in phase. A portion
of the incident beam is reflected by the fringe and the other portion is transmitted
through the fringe. The reflected portion of R0 merges into S�x�, and similarly the
reflected portion of S0 merges into R�x�. The waves reflected by the fringe undergo
a �!/2�-radian phase shift [14–16], while the waves transmitted through the fringe
undergo no phase shift. Referring to Fig. 5.20a, the S�x� and R�x� beams are

R�x� D tR0 C jrS0 �5.55�

S�x� D jrR0 C tS0 �5.56�

where r and t are reflection and transmission coefficients and are assumed to be real
numbers.
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Figure 5.20 Explanation of gain in the photorefractive medium. (a) The n maximum matches that
of the light fringe. (b) The n maximum is shifted from that of the light fringe.

When R0 D S0 and the beams are like polarized, the location of the fringe maximum
lines up with the n grating maximum, and from Eqs. (5.55) and (5.56), R�x� D S�x�.
There is no net energy transfer between the R and S beams.

Next, let us shift the location of the maximum of n to the right by d, as shown in
Fig. 5.20b, in order to analyze the case of the shifted n in Fig. 5.18e or Fig. 5.19c.
This shift creates a phase shift of the reflected wave but not of the transmitted wave.
Equations (5.55) and (5.56) become

R�x� D tR0 C jrS0e
j �5.57�

S�x� D jrR0e
�j C tS0 �5.58�

where  D 2d�2!/"�. When d D "/8 and  D !/2 radians, then

R�x� D tR0 � rS0 �5.59�

S�x� D rR0 C tS0 �5.60�

and the magnitude of S�x� is larger than R�x�. This is interpreted as a net transfer of
energy from the R beam into the S beam. On the other hand, when  D C!/2 radians,
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the magnitude of R�x� becomes larger than S�x� and the direction of the transfer of
energy is reversed.

Figure 5.21 illustrates the above description by a phasor diagram. Outputs R�x� and
S�x� from the crystal are expressed in terms of the inputs R0, S0, S0ej , and R0e�j 
so as to demonstrate the influence of  on the transfer of energy between R�x� and
S�x�. The following three cases are considered:

Case (a) is for  D 0.
Case (b) is for 0 <  < !/2.
Case (c) is for  D !/2.

For all cases, the amplitudes R0 and S0 are assumed identical. From the figure, the
contribution to the energy transfer from R0e�j into S0ej increases as  approaches
 D !/2 radians. This phase shift is essential for the energy transfer. The phasor
representation of Fig. 5.21 is easily extended to the case where R0 and S0 are real but
unequal. For S0 − R0, the energy transfer from the R beam into the S beam can result
in S�x� being much larger than its initial value S0.

So far, the crystal was assumed to be isotropic and the value of  was assumed not
to depend on the choice of the direction of x in Fig. 5.18. In reality, the value of  ,
which determines which way the energy flows, critically depends on the orientation of
the crystal axis.

The direction of the energy flow in the case of barium titanate (BaTiO3) is shown
in Fig. 5.22. When the incident light R0 and S0 of equal amplitude pass through the
crystal, the angle  is established in such a way that the energy of R0 flows into S0
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Figure 5.21 Phasor diagram of the energy transfer for various values of  .
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Figure 5.22 Direction of the energy flow. In a BaTiO3 crystal, the energy flows as if the light is bent
toward the c axis.

and S�x� > R�x�. It behaves as if the light energy is bent toward the direction of the
crystal axis.

5.7.3 Optical Amplifier Structure

Now the results of the previous two sections are combined to explain the principle of
operation of an optical amplifier. Most of the discussion up until now dealt with the
case where R0 D S0. However, the more common situation in the use of this optical
amplifier is to start with one of the beams being much smaller in intensity than the
other, namely, S0 − R0. In this case, as the intensity S0 increases, the intensity fringe
contrast increases, which increases the magnitude n of the phase modulation, which
causes the reflectivity of the phase grating fringe to increase, which causes more energy
transfer from the R beam into the S�x� beam. Thus, the output S�x� increases with an
increase in input S0, and the device functions as an optical amplifier. The phase grating
plays the role of a gate to control the energy flow from R0 into S�x�.

Figure 5.23 shows the structure of an optical amplifier using a BaTiO3 optical guide
whose crystal axis is periodically reversed [17]. The periodic reversal of the crystal

Fringe BaTiO3 Crystal

R(x)

S(x)

S0

R0

c Axis

Figure 5.23 Periodically arranged BaTiO3 photorefractive amplifier. (After F. Ito, K. Kitayama, and
O. Nakao [17].)
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Figure 5.24 Optical amplifier based on the photorefractive effect.

axis makes it possible to fabricate the optical amplifier in a thin layer. The R wave
(pump wave) changes its direction of propagation after each reflection from the wall,
but the direction of the crystal axis is also reversed so that the light energy always flows
from the pump wave into the signal wave following the rule explained in Fig. 5.22.

Figure 5.24 shows a model that uses an external electric field. An external electric
field is applied because, as discussed in Section 5.5.1, it significantly increases the
magnitude n of the phase grating modulation. Unfortunately, however, the phase
grating formed under an external electric field loses the !/2-radian shift that is essential
for the transfer of the light energy from R0 into S�x�. A moving mirror mounted on
a piezoelectric crystal changes the phase of the R beam and artificially provides the
necessary !/2-radian phase shift. The speed of the movement of the mirror critically
depends on the speed of formation of the phase grating by R0e�j and S0ej [14].

5.8 PHOTOREFRACTIVE BEAM COMBINER FOR COHERENT
HOMODYNE DETECTION

A homodyne detection scheme has significantly higher sensitivity than that of a direct
detection scheme (see Chapter 12). With the homodyne detection scheme, a local oscil-
lator light is added collinearly with the signal light by means of a beam coupler and fed
into the mixer diode as shown in Fig. 12.9. The phase as well as the frequency of the
two lightwaves have to be kept identical at all times. If there exists an ˛-radian phase
difference between these two lightwaves, the output signal current from the mixer
reduces by cos˛. One way of keeping ˛ zero is the elaborate Costas loop mentioned
in Chapter 12. Another way of alleviating the stringent requirement on ˛ is by using
a photorefractive crystal as a combiner for these two lightwaves.
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Figure 5.25 Beam combiner made out of BaTiO3 for homodyne detection.

Figure 5.25 explains the operating principle of the photorefractive crystal
combiner [18–20]. As soon as E1, which eventually becomes the local oscillator light,
and the signal light Es enter into the photorefractive crystal, a refractive index fringe
pattern starts to establish itself in the crystal as shown by the solid lines.

For the sake of simplicity, the phase shift  is assumed zero and the photorefractive
crystal will be treated as an ordinary holographic plate. The refractive index fringe is
then expressed as

n D ˇ[�Es C E1��E
Ł
s C EŁ

1�

D ˇ[jEsj2 C jE1j2 C EsE
Ł
1 C EŁ

s E1]
�5.61�

The third term in Eq. (5.61) is responsible for reconstructing Es when the reconstruction
beam E1 illuminates the fringe.

Er D ˇEsjE1j2 �5.62�

Another field reaching the detector is due to the direct transmission with some
attenuation:

Ed D ˛Es �5.63�

The output Et from the lower right of the crystal is the sum of Eqs. (5.62) and (5.63)

Et D ˇjE1j2Es C ˛Es �5.64�

Et is detected by the mixer photodiode. The frequency and phase of the first term are
identical with those of Es, constituting an ideal local oscillator light for homodyne
detection.

If the crystal is a photorefractive material with  6D 0, and if the direction of the
crystal axis c is downward, E1 is even more efficiently refracted toward the signal Es
because of the transfer of light energy in the direction of the crystal axis.
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Let us consider the stability of the system in the event of a phase fluctuation. Let’s
say the phase fluctuation of Es is a delay. The delay in the phase of the signal Es
causes a shift of fringe pattern. The newly established fringe pattern moves upward,
as drawn by the dashed lines in Fig. 5.25. Now, the light E1 has to travel a longer
distance to reach the mixer diode because of the upward shift of the fringe pattern and
E1 is also delayed. Thus, the fringe pattern reestablishes itself such that the fluctuation
of the signal light is compensated.

In the field of satellite-to-satellite free-space optical communication, such a combiner
automatically compensates for phase fluctuations. A common occurrence in these
optical communication systems is that the direction of the signal light fluctuates. If
a beamsplitter such as the one shown in Fig. 12.13 is used as the combiner, then the
physical orientation of the beamsplitter has to follow the direction of fluctuation so
as to align the signal and local oscillator light to be collinear at all times. The fringe
pattern in the photorefractive crystal, however, can reestablish itself to compensate for
the phase fluctuation originating from the directional fluctuation.

5.9 OPTICALLY TUNABLE OPTICAL FILTER

Figure 5.26a shows an example where the refractive index pattern in a photorefractive
crystal itself is used as a tunable filter. The index of refraction grating is generated
by illuminating a BaTiO3 crystal with the optical fringe pattern generated by the
interference of two coherent writing beams. The period of the refractive index grating
can be changed by changing the angle 2� between the two writing beams. The results
in Fig. 5.26 [21] was obtained by scanning � and thus demonstrate the capability of
resolving the combined outputs from two laser diodes whose wavelengths are closely
spaced.

5.10 LIQUID CRYSTALS

A striking difference between a liquid crystal and a solid crystal is that the molecular
orientation of a liquid crystal [22–25] is easily altered by low-amplitude electric or
magnetic fields and by small changes in temperature or mechanical pressures. This high
degree of susceptibility to external influences comes from the fact that the molecular
orientation of the crystal is governed by van der Waals forces. Van der Waals forces
arise from dipole–dipole interactions and are proportional to 1/r6, where r is the
distance between the molecules. The interatomic force of a simple solid ionic crystal
like NaCl is a coulombic force and is proportional to 1/r2.

The necessary control voltages of liquid crystal devices are significantly lower than
similar devices based on the Pockels electrooptic effect. An electrically controlled
birefringence cell, such as shown in Fig. 5.3, normally requires a voltage close to an
arcing potential, while liquid crystal devices of the same function typically need just
a few volts.

5.10.1 Types of Liquid Crystals

Liquid crystals are classified into the following four types: (1) cholesteric, (2) smectic,
(3) nematic, and (4) discotic. Each of these types is discussed individually in the
sections to follow.
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Figure 5.26 Optically tunable optical filter. (a) Experimental setup for wavelength division
multiplexing using an optically tunable filter. (b) Tunable photorefractive filter output: resolving
simultaneous signals from laser diodes LD 1 and LD 2. (After R. James et al. [21].)

5.10.1.1 Cholesteric
The molecular orientation of the cholesteric-type liquid crystal is shown in Fig. 5.27a.
The molecules are arranged in parallel planes that are perpendicular to the optic axis.
The planes rotate helically along the optical axis. To light whose wavelength is much
shorter than the pitch of the helix, the cholesteric liquid crystal film behaves like a
rotator described in Section 6.7. Linearly polarized incident light rotates its direction
of polarization as it propagates through the film. The light that is transmitted through
the film remains linearly polarized, but the direction of linear polarization is rotated.

When the light wavelength is comparable in magnitude to the pitch of the helix,
there will be a reflected wave as well as a transmitted wave under the right conditions.
Light whose wavelength matches with the pitch of the helix multiplied by the index of
refraction is reflected from the internal layers and comes back to the entry surface as
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Figure 5.27 Types of liquid crystals. (a) Cholesteric crystal. (b) Smectic liquid crystal (A type).
(c) Nematic liquid crystal. (d) Discotic liquid crystal in nematic-like orientation.

the reflected wave. As a result, the cholesteric liquid displays a vivid color associated
with the pitch of the helix.

It should be added that a linearly polarized wave can be decomposed into two
oppositely rotating circularly polarized waves. Only the circularly polarized wave
whose sense of rotation matches that of the helix participates in creating the color.
The pitch of the cholesteric crystal changes with temperature, and hence the color of
the reflected light also changes with temperature. This fact makes the crystal film very
useful for mapping the spatial distribution of temperature. Combined with a resistive
film, the cholesteric liquid crystal film is also used for spatial mapping of microwave
radiation [26].

Since the pitch of the cholesteric crystal is pressure sensitive, the change in color
of the cholesteric liquid crystal can also be used for spatial pressure mapping.

5.10.1.2 Smectic
As shown in Fig. 5.27b, molecules of the smectic liquid crystal are structured in layers.
In each layer, the molecules are stacked with their axes parallel to each other. The
stacks are aligned, nearly perpendicular (smectic A type) to the layers or slightly tilted
(smectic C type) to the layers. The spacing between the layers is more or less one
molecular length long.

This type of liquid crystal is turbid white in color and slimy in texture. The name
smectic is derived from the Greek smektis, meaning soap.

Some smectic liquid crystals are ferroelectric and are used as fast response time
display devices.

5.10.1.3 Nematic
Figure 5.27c shows the orientation of the molecules of the nematic liquid crystal. The
molecules are aligned in parallel lines, but not in layers. Vector n, which represents the
statistically preferred direction, is called the director. The orientation of the director
in Fig. 5.27c is vertical. Under the microscope, the nematic liquid crystal looks like
combed threads. The name nematic is derived from the Greek nemat, meaning thread.

The optical properties of well-aligned nematic liquid crystals are similar to those of
uniaxial crystals.
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5.10.1.4 Discotic
The discotic liquid crystal is the latest addition to the family of liquid crystals. For
the liquid crystals shown in Figs. 5.27a–5.27c, the molecules are all cigar–shaped. In
the discotic liquid crystal, the molecules are shaped like disks. Figure 5.27d shows a
discotic liquid crystal in a nematic-like orientation. Besides this orientation, there are
discotic liquid crystals in a smectic-like orientation and in a cholesteric-like orientation.

5.10.2 Molecular Orientations of the Nematic Liquid Crystal
Without an External Field

The molecular orientation of the nematic liquid crystal is influenced by its container or,
more specifically, by the surface of the inner walls of the cell used to contain the liquid
crystal. When the molecules are oriented parallel to the liquid crystal cell as shown
in Fig. 5.28a, this orientation is called the homogeneous orientation. Such cell walls
are coated with a thin film of polymers such as polyvinyl alcohol (PVA) or polyimide
(PI). On the polymer surface, fine streak marks are made by rubbing the surface with
a nylon cloth. The fine streaks act as anchors to the molecules in the direction of the
rubbing.

When the molecules are oriented perpendicular to the cell surface as shown in
Fig. 5.28b, this orientation is called the homeotropic orientation. Such an orientation
is possible by chemically treating the surface with a coupling agent [24,27,28]. The
treated surface anchors one end of the molecules, and a perpendicular orientation of
the molecules results.

The third orientation is the twisted nematic orientation. With the homogeneous
orientation, when the rubbing directions of the facing cell walls are not parallel, the
direction of the molecules is twisted between the two walls. If the twist is gradual and
the thickness d between the walls is thick enough to satisfy

4d > "�ne � n0�

then the direction of polarization of the light follows the twisted molecular axis. The
cell displays the property of a rotator. The direction of polarization is rotated by the
same angle as the twist of the rubbing directions.

(a) (b) (c)

Cell wall

Cell wall

Streak
marks on

PVA

Figure 5.28 Molecular orientations of nematic liquid crystal. (a) Homogeneous. (b) Homeotropic.
(c) Twisted (180°).
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5.10.3 Molecular Reorientation of the Nematic Liquid Crystal
with an External Electric Field

The usefulness of the nematic liquid crystal resides in the controllability of the
molecular orientation by an external electric field. The change in molecular orientation
produced by an external electric field depends on the polarity of the birefringence of
the particular nematic crystal used.

The molecular energy of the nematic liquid crystal is made up of polarization and
elastic energies. The static energy of the induced polarization is given by [29]

U D �
∫

P · E/dv �5.65�

and the larger the induced polarization P is, the lower the polarization energy U is.
Let us consider a nematic liquid crystal with a positive birefringence (see Section 4.2)

ne > n0 �5.66�

where ne is the refractive index in the direction of the director (in the molecular
axis) and n0 is that in the direction perpendicular to the director. From Eqs. (4.3)
and (4.5), with a positive birefringence, the induced polarization P is larger; hence,
the polarization energy U is lower when the director is parallel to the external field.
Thus, the director of a positive birefringent nematic crystal is reoriented to the same
direction as the external electric field. On the other hand, the molecular axis of a
negative birefringent liquid crystal is reoriented to the direction perpendicular to the
external electric field.

The transition between homogeneous and homeotropic orientation takes place only
when the external electric field exceeds a critical value. In other words, there is a
threshold value for the external field. The threshold value is reached when the energy
due to the induced polarization exceeds the elastic energy of the molecules. This is
called the Freédericksz effect.

Example 5.7 An electrically controlled birefringence (ECB) cell is to be constructed
using a nematic liquid crystal. Proper combinations of the liquid crystal type and
the zero-field molecular orientation are important. Figure 5.29 summarizes possible
combinations of the polarity of the birefringence and zero-field molecular orientation.
Select the workable combinations.

Solution The molecules have to be reoriented each time the on and off states are
switched.

With the homogeneous zero-field orientation, a positive birefringent nematic liquid
crystal has to be used because the positive birefringent liquid crystal reorients to the
homeotropic configuration when the external field is applied. The negative birefringent
liquid crystal tends even more to the homogeneous orientation at the on state.

For the same reason, with the homeotropic zero-field orientation, a negative
birefringent nematic liquid crystal has to be used so that the molecules are reoriented to
the homogeneous configuration when the external field is applied. The proper selections
are Cases 1 and 4 in Fig. 5.29. �



346 OPTICAL PROPERTIES OF CRYSTALS UNDER VARIOUS EXTERNAL FIELDS

Cases

Combination
Case 1 Case 2 Case 3 Case 4

Molecular
orientation
in off-state

Polarity of the
birefringence of
the liquid crystal

Positive Negative Positive Negative

Figure 5.29 Combinations of the molecular orientation and polarity of the birefringence of a liquid
crystal for constructing an ECB.

5.10.4 Liquid Crystal Devices

Devices utilizing liquid crystals will be described in this section. These devices include
phase shifters, variable focus lenses, rotators, waveplates, spatial light modulators,
general displays, and liquid crystal television. The attractive features of liquid crystal
devices are their low control voltage, low power consumption, light weight, small size,
and long life.

5.10.4.1 Liquid Crystal Fabry–Pérot Resonator
The structure of the liquid crystal Fabry–Pérot resonator has already been shown in
Fig. 3.12.

The maximum change in the refractive index is equal to the birefringence of the
nematic liquid crystal. Typical values are n0 D 1.5 and ne D 1.7, which correspond to
a change of about 0.2.

With a 10-µm long cavity, the obtainable tuning range is approximately 200 nm. The
switching speed from one wavelength to another is of the order of tens of milliseconds.

5.10.4.2 Liquid Crystal Rotatable Waveplate
A nematic liquid crystal displays a birefringence like a uniaxial solid crystal and can
be used as a waveplate [30]. By applying a rotating external electric field, the director
(molecular axis) of the nematic liquid crystal can be rotated and an electrically rotatable
waveplate can be realized.

Figure 5.30 shows the electrode geometry for a rotatable waveplate. By applying a
sinusoidal electric field with consecutive phase delays of 45°, a rotating electric field
is established in the center.

Do not confuse this device with a rotator. A rotator simply rotates the direction
of polarization of the passing light. On the other hand, in a waveplate, also called a
retarder or retardation plate, the incident polarized light is resolved into the two allowed
directions of polarization inside the crystal. Because of the different refractive indices,
one component lags the other. The phase difference between the two components
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−V0∠ −45°

V0 ∠ 90°

V0 ∠ 45°

V0 ∠−45°

−V0 V0

Light beam

Glass

Electrode

PVA

Glass

−V0 ∠90°

−V0 ∠45°

Figure 5.30 Top and side views of a rotatable waveplate. (After T. Chiba, Y. Ohtera, and S. Kawakami
[30].)

is the retardation. When the two components recombine in the emergent light, the
polarization of the emergent light is changed depending on the amount of retardation.
More quantitative discussions on rotators and waveplates can be found in Chapter 6.
Figure 6.19 shows conventional waveplates being used to convert the polarization of
the incident light. In this figure, human fingers rotate the direction of the fast axis of
the waveplates. In the liquid crystal rotatable waveplate, the human fingers are replaced
by electronic control.

The speed of rotation is limited by the response of the liquid crystal and is slower
than about 100 revolutions per second. The values of the retardation are determined
by the thickness of the liquid crystal cell, and any desired value can be designed.

Such a device is useful for the automatic compensation for the fluctuations in
the state of polarization of the received signal for coherent detection in fiber-optic
communication systems (see Chapter 12).

5.10.4.3 Liquid Crystal Microlens
A nonuniform electric field is established in a nematic liquid crystal (NLC) cell when
one of the cell’s electrodes has a circular hole in its center. This nonuniform electric
field produces a semiquadratic spatial distribution of the refractive index in the nematic
liquid crystal. This refractive index distribution acts as a microlens [31].

Figure 5.31a shows the geometry of the liquid crystal lens using a positive
birefringent nematic crystal. Without the external electric field, the molecular axes are
in the homogeneous orientation. With the electric field on, the strength of the electric
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Figure 5.31 Liquid crystal microlenses. (a) With a positive birefringent nematic liquid crystal. (b) With
a negative birefringent nematic liquid crystal.

field is increased as the rim of the circular hole is approached. Because the nematic
liquid crystal is the positive birefringent type, the orientation of the molecular axes
becomes homeotropic as the rim of the circular hole of the electrode is approached.

Figure 5.32b shows the equiphase lines of light emergent from the microlens whose
geometry is shown in Fig. 5.32a. Typical parameters for a liquid crystal microlens are
given in Table 5.4.

Glass
N-LC
ITO

(a)

(b)

Figure 5.32 Geometry and interference fringes of a liquid crystal microlens. (a) Geometry of two-hole
type. (b) Interference fringe. (After M. Homma, T. Nose, and S. Sato [31].)
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Table 5.4 Typical parameters for
a liquid crystal microlens

Parameter Range

Cell thickness 50–200 µm
Hole diameter 20–80 µm
Control voltage 1–3 V
Focal length 0.2–0.5 mm

Arrays of liquid crystal microlenses are used in optical displays, optical intercon-
nects, and optical signal processing.

5.10.4.4 Twisted Nematic (TN) Liquid Crystal Spatial Light
Modulator (TNSLM)
The twisted nematic (TN) liquid crystal cell is constructed by inserting a positive
birefringent liquid crystal between polyimide film sheets rubbed in two different
directions, which determine the amount of the desired twist.

Figure 5.33 illustrates the principle of a TN liquid crystal rotator functioning as a
light on–off panel. In Fig. 5.33a, the TN liquid crystal cell is designed to give a 90°

twist. The incident light from the left is first filtered to be horizontally polarized light

Polarizer P1
(transmission

axis horizontal)

Glass

Polyimide
ITO

Glass

Polyimide
ITO

Polarizer P290° TN

No light

Light

Off

On

(a)

(b)

Figure 5.33 Principle of filtering light by twisted nematic liquid crystal. (a) No voltage applied.
(b) Voltage applied.
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by polarizer P1. The long liquid crystal molecules are twisted and the direction of
polarization of the incident light is twisted as it propagates, as if trying to follow the
direction of the higher refractive index, which is along the axis of the molecule. The
direction of polarization is rotated from horizontal to vertical. The light is blocked by
the output polarizer P2 and there is no emergent light. This corresponds to the “off”
state of the pannel.

When an external electric field (either ac or dc) is applied to the electrodes, the
twisted positive birefringent liquid crystal molecules are straightened in the direction
of the applied electric field and the rotation of the polarization ceases, as shown
in Fig. 5.33b. The transmitted light is thus horizontally polarized and emerges from
polarizer P2, thereby creating the “on”state of the pannel. Such a panel is widely used
in display devices.

5.10.4.5 Electrically Addressed Spatial Light Modulator (EASLM)
A typical example of the electrically addressed spatial light modulator (EASLM) is the
liquid crystal television (TV). The liquid crystal TV is made by arranging microsize
(¾ 50 ð 50 µm2) TN liquid crystal cells in a matrix form, such as shown in Fig. 5.34.

With color TV, microcolor filters of red, green, and blue (R, G, B) are placed so
that the white light from the back panel light source is converted into color.

Each pixel is equipped with a thin film transistor (TFT), which can be addressed
by way of the data and scanning electrode arrays. The light transmission is varied
by varying the control voltage to the TFT. The capacitance Cp of each pixel holds
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Figure 5.34 Liquid crystal TV.
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the charge and maintains the voltage until the subsequent signal is addressed. This
holding mechanism significantly enhances the brightness of the pixel. The additional
capacitance CLC is for further enhancement in the brightness.

5.10.4.6 Optically Addressed Spatial Light Modulator (OASLM)
The construction of the optically addressed spatial light modulator (OASLM) [32] is
shown in Fig. 5.35. Unlike the EASLM, the OASLM directly uses the light image as
an input signal. It is not divided into pixels.

A pair of ITO electrodes provide an external electric field to the two major
components: the photoconductor layer and the TN liquid crystal cell. These two major
components are optically isolated by a mirror layer in the midle.

At the locations where the light intensity from the cathode ray tube is low, the
impedance of the photoconductor is high, and no external electric field is applied to
the TN liquid crystal. However, at the locations of high-intensity light, the impedance
of the photoconductor is low and an external electric field that exceeds the Freédericksz
threshold is applied to the liquid crystal layer. The twisted orientation of the nematic
liquid crystal converts into the homeotropic orientation.

Next, referring to Fig. 5.35, we will explain how the external image is extracted.
The extraction of the external image makes use of a polarization beamsplitter (PBS),
such as described in Section 6.5.2. The PBS reflects the s wave (vertically polarized
wave) and transmits the p wave (horizontally polarized wave).

Light ab with arbitrary polarization is used as the readout light beam of the system.
Light bd emergent from the PBS toward the TN liquid crystal cell is vertically polarized
and is used as the input light to the OASLM. At location e where the light intensity
from the cathode tube is low, the molecular orientation is twisted. As the incident light
bd penetrates into the TN liquid crystal cell, the direction of polarization rotates with
the twist of the liquid crystal molecule and reaches the mirror. Then, the direction
of polarization of the light reflected from the mirror rerotates back the same amount.
The emergent light ef from the TN liquid crystal cell recovers the original vertical
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Figure 5.35 Optically addressed spatial light modulator.
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polarization and is reflected by the PBS toward the original source as fg and does not
reach the output image plane.

On the other hand, for light a0b0, which is incident at location e0 where the intensity of
the image light from the cathode ray tube is high, the molecular orientation tends to be
homeotropic and the molecular axis is no longer parallel to the direction of polarization
of the incident light. The incident light starts to have components both parallel and
perpendicular to the molecular axis. Light e0f0 emergent from the SLM is no longer
linearly polarized. Even though the vertically polarized component is reflected to the
source as f0g0 by the PBS, the horizontally polarized component passes through the
PBS and is projected onto the output screen as f0h0 to form the output image.

The applications of the OASLM are multifold:

1. Image Intensifer. The intensity of the output image can be increased to any
desired level by increasing the power of the read light source. Large-scale image
projectors are made.

2. Incoherent–Coherent Converter. The input image can be either coherent or
incoherent light. Many types of optical signal processors need coherent light
images. The output from the OASLM is a coherent optical image if coherent
light is used for readout.

3. Wavelength Converter. A far-infrared image can be converted into a visible image
because the nematic liquid crystal works beyond the infrared light region.

5.10.4.7 Polymer-Dispersed Liquid Crystal (PDLC)-Type Spatial Light
Modulator (SLM)
A polymer-dispersed liquid crystal (PDLC) is a homogeneous mixture of polymer
and liquid crystal microdroplets [33,34]. Figure 5.36 shows examples of spatial light
modulators using the PDLC. The microdroplets are positive birefringent nematic liquid
crystals with diameters less than a micron. The refractive index np of the polymer is
set close to that of n0 of the liquid crystal and

n0 D np

ne > np

When the external electric field is absent, the orientation of the molecular axes of
the nematic liquid crystal in the microdroplet is arbitrary and the microdroplets become
scattering centers, as shown in Fig. 5.36a. The transmission of light is low.

V = 0 V = V

(a) (b) (c)

Figure 5.36 Polymer-dispersed liquid crystal (PDLC) light modulator. (a) Off state. (b) On state.
(c) Light modulator of the fiber optic type. (After K. Takizawa et al. [33].)



LIQUID CRYSTALS 353

On the other hand, when the external field is applied, the crystal axis is aligned
because of the positive birefringence. Incident light with a normal incident angle but
with an arbitrary state of polarization sees the refractive index n0. The light transmits
through the modulator with minimum attenuation, as shown in Fig. 5.36b.

The advantages of the PDLC-type SLM compared to the TN-type SLM is that
neither polarizer nor analyzer is needed, the efficiency is higher, and the operation is
polarization independent.

In Fig. 5.36c, the PDLC is used as a fiber-optic light modulator. PDLC film can be
also used as an erasable volume hologram [35]. The reconstructed image from such a
hologram is shown in Fig. 5.37.

5.10.5 Guest–Host Liquid Crystal Cell

A dichroic dye is a dye whose wavelength absorption characteristics depend on
the direction of the molecular axis with respect to the incident light polarization.
When a small amount of elongated dichroic dye is mixed as a guest molecule into
a host of nematic or cholesteric liquid crystal, the dye molecules are aligned in
the liquid crystal matrix. The dye molecules follow the reorientation of the liquid
crystal when an external field is applied. Such an effect is called the guest–host
effect and can be used to make a color display cell. Figure 5.38 shows a double
guest–host (DGH) cell, which concatenates two GH cells. The DGH cell does away
with the polarizer sheet, resulting in a higher brightness. The DGH cell uses a doped
negative birefringent nematic liquid crystal oriented homeotropically in the off state,
but with a slight tilt angle from the normal, as shown in Fig. 5.38a. The tilted
homeotropic orientation is achieved by an oblique angle evaporation of SiO followed
by treatment with a homeotropic surface coupling agent, N,N-dimethyl-N-octadecyl-
3-aminopropyltrimethoxysilyl chloride (DMOAP) [27].

The guest dye is a positive-type dye, which means the dye absorbs light when the
direction of polarization of the incident light is parallel to the axis of the dye molecule.

In the off state, as shown in Fig. 5.38a, both horizontal and vertical components of
the incident light are polarized perpendicular to the dye molecule, and only minimum
interaction takes place. The emergent light is either untinted or slightly tinted in color.

Figure 5.37 Reconstructed image of a hologram recorded in a PDLC film. (Courtesy of V. P. Tondiglia
et al. [35].)
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Figure 5.38 Double guest host cell. (a) Off state. (b) On state. (After T. Uchida, and M. Wada [27].)

In the on state, as shown in Fig. 5.38b, the dye molecules are reoriented to be
homogeneous together with the liquid crystal molecules. The direction of the dye
molecules is parallel to the vertical polarization in the first cell, and parallel to the
horizontal polarization in the second cell. Significant interaction takes place for both
polarizations and the emergent light is colored.

The GH cell is superior to cells with microcolor filters in the vividness and
uniformity of the color as well as a wider viewing angle.

5.10.6 Ferroelectric Liquid Crystal

While the switching speed of a nematic crystal display is of the order of 1–10
milliseconds, that of a ferroelectric crystal is much faster and is of the order of 1–10
microseconds. A ferroelectric liquid crystal [23,37,38] display uses a chiral smectic C
phase liquid crystal. The term “smectic C” means a smectic crystal with the molecular
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axis tilted from the molecular layers. Chiral means handed in Greek. A chiral molecule
is a molecule that is not superimposable on its mirror image [22], for example, a helix
whose mirror image can never be superimposed on its original. Here the molecular
structure is spiral.

Figure 5.39a shows the off-state structure of a chiral smectic C liquid crystal in a
display cell. While the molecules in the same layer are pointing in the same direction,
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Figure 5.39 Switching function of a chiral smectic C liquid crystal. (a) Without external field E.
(b) With upward external field E. (c) With downward external field E.
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molecules between layers 1,2,3,. . ., are consecutively rotating like a cholesteric crystal
with the helical axis z perpendicular to the boundary planes of the layers (shown in
fine vertical dotted lines) and with the apex angle �. The refractive index of the crystal
in the � direction is the same as that in the �� direction.

Each molecule has a spontaneous dipole moment perpendicular to the molecular
axis, as indicated by the white head arrow. Do not confuse the spontaneous dipole
moment with the dipole moment induced by an external field. The spontaneous
polarization is present regardless of the external field ε.

This is the very source of the difference between the properties of the ferroelectric
liquid crystal and the properties of the nonferroelectric liquid crystal. Unlike the induced
polarization, the direction of the spontaneous polarization is unchanged by the external
field and it is fixed perpendicular to the molecular axis or the director. (Visualize a person
with open arms. The body represents the director, the arms represent the dipole moment.)

The effect of the torque of the dipole moment on the molecular orientation is
illustrated in Fig. 5.40 and explained in the boxed note.

As soon as the external electric field is applied, the torque generated by the
spontaneous dipole moment flips both the director and the dipole moment so that
the dipole moment lines up with the external electric lines of force, as illustrated in
the boxed note. Figure 5.39b shows the case when the direction of the external electric
lines of force is upward and all molecules (directors) are lined up in the direction tilted
� degrees from the helix axis z.

The switching mechanism of the chiral smectic C liquid crystal will be illustrated using
an analogy. One of the ends of a banana is pierced by a metal fork (Fig. 5.40). The fork is
assumed magnetized. The banana represents the elongated molecule or the director, and the
fork, the spontaneous polarization. By loosely holding the other end of the banana, if the
banana is placed under a strong external magnetic field with its N pole at the bottom, the
banana will be flipped such that the magnetic moment of the fork lines up with the external
magnetic field. As a consequence, the banana will be oriented in a plane perpendicular to
the external magnetic field and to the left-hand side of the figure.

When, however, the polarity of the external magnetic field is reversed, the banana will
flip to the right-hand side of the figure.

Thus, by switching the polarity of the external magnetic field, the orientation of the
banana (director) can be flipped between the two binary horizontal orientations.

N

N

S 2q

S

Figure 5.40 Explanation of the switching action of a ferroelectric liquid crystal.
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On the other hand, when the polarity of the external electric field is switched to
downward, all molecules (directors) are switched to the direction tilted �� degrees
from the helix axis z as shown in Fig. 5.39c.

Thus, an electrically controlled birefringent (ECB) cell can be made out of the chiral
smectic C cell. The change in the direction of the director is 2� D 20° –30°. This is large
enough to fabricate a light modulator in collaboration with a polarizer and an analyzer.

In order to enhance the performance of the cell, it is important to keep the cell
thickness shorter than the pitch of the helix, which is 2–3 µm, so that the surface force
may assist in aligning the molecules parallel to the surface. This cell has the merits of
memory and a fast switching speed. The change between two discrete states is binary.

5.11 DYE-DOPED LIQUID CRYSTAL

The dye-doped nematic liquid crystal [39] displays a “photorefractive-like” nonlinearity
in the sense that its refractive index changes when exposed to light.

When a nematic liquid crystal is exposed to the fringe pattern created by laser light,
a spatial variation of the charges is established in small amounts just like the case of
the photorefractive crystal shown in Fig. 5.18.

The amount of charge is significantly increased when the nematic liquid crystal
is doped with dyes like rhodamine-6G, fullerene C60, and especially methyl-red.
The electric field established by this spatial charge distribution contributes to the
reorientation of the directors of the nematic liquid crystal. The reorientation of the
directors results in a change in the index of refraction. With regard to the mechanisms
responsible for changing the refractive index, the difference between the photorefractive
crystal and the dye-doped liquid crystal is that, with the former, the Pockels effect
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Figure 5.41 An incoherent to coherent image converter using a dye-doped nematic liquid crystal.
(After I. C. Khoo et al. [39].)
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changes the refractive index, but with the latter, the reorientation of the directors
changes the refractive index.

Another difference to be noted is that the sensitivity of the photorefractive crystal
improves when a dc E field is applied because of the shift in the charge pattern, as
mentioned Section 5.7.1. The sensitivity of the doped nematic liquid crystal is also
increased when a dc E field is applied, but the mechanism of the enhancement of the
sensitivity is slightly different. The spatial variation of the orientation of the directors
that has already been established creates a spatial variation of the conductivity. When
a dc E field is applied, a spatially varying electric field is established. This varying
field further assists the spatial orientation of directors of the nematic liquid crystal.

Figure 5.41 shows an incoherent to coherent image converter using the doped
nematic liquid crystal. Compared to the optically addressed spatial light modulator
mentioned in Section 5.10.4.6, the fabrication is simpler because the deposition of the
photoconductive film has become unnecessary.

PROBLEMS

5.1 In Example 5.2, the direction of propagation was taken as the z direction. For
this direction of propagation, the retardation was calculated for the three cases
ε D εx, ε D εy , and ε D εz. In this problem, we remove the restriction that light
must propagate in the z direction. Of the following three possibilities for the
applied field direction — ε D εx, ε D εy , or ε D εz — determine which applied
field direction best takes advantage of the largest Pockels coefficient r33 of
lithium niobate. Find the expression for the indicatrix. Determine the propagation
direction that maximizes the retardation , and find an expression for .

5.2 Referring to Fig. 5.6, find the biasb that best makes use of the linear portion of the
I versus  curve. Find an expression for the modulated light intensity, assuming
that the phase changes produced by the modulation are much less than b.

5.3 Sinusoidal external electric fields are applied to a lithium niobate crystal in both
the x and y directions, and the direction of the incident wave is along the z axis as
shown in Fig. P5.3. Prove that the cross-sectional ellipse is rotated if the external

εx = E0 cos Φ

εy = E0 sin Φ

y

x

z

q

Figure P5.3 Application of a rotating external electric field to LiNbO3.
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Figure P5.6 Ninety-degree TN cell combined with polarizing beamsplitters and 90° prisms.

fields are

εx D E0 cos

εy D E0 sin

5.4 In the discussion of the photorefractive effect, an intensity fringe pattern was
used to create a phase grating. Draw the intensity fringe pattern generated by the
two intersecting beams

R D R0e
j�kxxCkzzC �

S D S0e
j��kxxCkzz�

To simplify the problem, let R0 D S0 D 1, and consider only the z D 0 plane.
Draw the intensity pattern as a function of x for the following three  values:
 D 0,  D !/2,  D �!/2.

5.5 Referring to Fig. 5.21, find the value of  that makes the maximum transfer from
S�x� to R�x�.

5.6 Ninety-degree TN cells are combined with polarizing prisms and 90° prisms as
shown in Fig. P5.6. Draw the path of light when the electric circuit switch is on
and when it is off [40].
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6

POLARIZATION OF LIGHT

Clever uses for polarized light are not restricted to just the field of photonics. Devices
for manipulating polarized light can be found in a wide range of settings, from advanced
research laboratories to the common household [1,2]. Perhaps one of the most familiar
household polarizers is a pair of sunglasses, a necessity for many car drivers on a
sunny day. Sunglasses filter the light specularly reflected from a flat paved surface.
The reflected light from the flat pavement is predominantly horizontally polarized, so
that a polarizer with a vertical transmission axis rejects the specular reflection.

Another example of polarizing glasses are those worn for viewing a stereoscopic
motion picture. In this case, the transmission axis of the polarizer covering the right
eye is orthogonal to that of the polarizer for the left eye. Likewise, the motion picture
scenes for the right and left eyes are projected using orthogonally polarized light. The
right eye polarizer passes the light for the right eye scene and rejects the left eye scene.
Similarly, the left eye polarizer passes the left eye scene and rejects the right eye scene.
The viewer enjoys a stereoscopic picture.

While the polarizing glasses of the previous examples are normally constructed with
linearly polarizing material, antiglare screens frequently employ circularly polarizing
sheets. Displays, such as radar screens, use these circularly polarizing sheets to suppress
glare. Light that enters the circular polarizer, and subsequently undergoes reflection at
some other surface, is blocked from reemerging from the circular polarizer because of
the reversal of handedness, while the light generated by the screen passes through.

Scientists in many disciplines use polarized light as a tool for their investigations.
Physicists are still trying to unfold the mysteries of the invariance of the state of polar-
ization of a photon before and after collisions with high-speed particles. Polarization
also presents puzzles such as: “What happens when only one photon polarized at 45°

with respect to the birefringent crystal axis enters the crystal?” Is the photon, which
is considered the smallest unit of light, further split into horizontally and vertically
polarized half-photons?

While puzzles such as these make polarization itself an interesting study, applications
of polarization devices and phenomena to other disciplines are extensive. Spectroscopists

362
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High definition 3D television.

use the Lyot–Ohman filter [1] made out of a combination of polarizers and retarders for
their work. With this filter, resolving powers as high as 0.01 nm can be achieved.

Astrophysicists study the pattern of magnetic fields in nebulae by mapping the
pattern of perturbation of the state of polarization of light from a nebula. These pertur-
bations result from the Faraday rotation caused by the magnetic field of the nebula.

Many organic materials rotate the direction of light polarization as light passes
through them. Chemists use this fact for analyzing the structure of new organic
molecules. One of the most familiar examples is the determination of the sugar content
of a sugar solution by measuring the rotation of the polarization.

Mechanical engineers use the strain birefringence pattern of a plastic model as an
aid to strain analysis. Colorful strain patterns in the plastic model can be viewed under
a polariscope.

Biologists are certainly beneficiaries of polarization microscopes [3] that enable
them to observe microbes that are transparent and invisible under normal light. The
polarization microscope sees the pattern of the retardance that the microbes create.
Biologists also know that the direction of polarization of the illuminating light controls
the direction of growth of some fungi is used for navigation by certain animals such
as bees and horseshoe crabs.

Principles of operation of many liquid crystal displays are based on the manipulation
of the polarized light as detailed in Chapter 5.

In the field of fiber-optic communication, many electrooptic devices are polariza-
tion dependent. Coherent optical communication systems detect the received light by
mixing it with local oscillator light. Fluctuations in the state of polarization of the
received light or the local oscillator light will cause the output power of the inter-
mediate frequency IF signal to fluctuate. Countermeasures have to be exploited. The
concepts in this chapter establish the foundation for understanding polarization. In
Chapter 12, we will deal with issues such as countermeasures for polarization jitter in
coherent communication systems.

6.1 INTRODUCTION

The types of waves that have so far appeared in this book have been linearly polarized
waves. The E field component did not change direction as the wave propagated. As
shown in Fig. 6.1a, this type of wave is called a linearly polarized wave, and the
direction of the E field is called the direction of polarization.
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(a)

(b)

(c)

(d)

k

k

Figure 6.1 Various states of polarization (SOP). (a) Linearly (horizontally) polarized. (b) Right-handed
circularly polarized. (c) Left-handed circularly polarized. (d) Depolarized.

In this chapter, waves whose directions of polarization rotate as the waves propagate
will be described. The E vector rotates around the propagation direction k, as the wave
propagates, as shown in Figs. 6.1b and 6.1c. When the cross section of the helix is an
ellipse, the wave is said to be elliptically polarized. When the cross section is circular
as in Fig. 6.1b, it is naturally called a circularly polarized wave. If the E vector rotates
in a clockwise sense when observed at a distant location in the propagation path while
looking toward the light source, as in Fig. 6.1b, the handedness of the polarization is
right-handed rotation. Similarly, if the E vector rotates in a counterclockwise direction,
as in Fig. 6.1c, the rotation is left-handed. If there is no repetition in the pattern of
the E field as the wave propagates, as shown in Fig. 6.1d, the wave is said to be
unpolarized or depolarized.

For handedness to be meaningful, both the direction of observation and the direction
of propagation have to be specified. By convention, the handedness is specified by
looking into the source of light.

Information describing the pattern and orientation of the polarized light is called
the state of polarization. Any given state of polarization can be decomposed into
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two linearly polarized component waves in perpendicular directions. The state of
polarization is determined by the relative amplitude and difference in phase between
the two component waves. This relative phase difference is termed retardance.

The three most basic optical components that are used for manipulating or measuring
the state of polarization are the (1) retarder, (2) linear polarizer, and (3) rotator.

In this chapter, the prime emphasis is placed on how to use these optical components.
The circle diagrams are predominantly used for explaining the operation. In the next
chapter, however, the Poincaré sphere will be used for explaining the operation.

6.2 CIRCLE DIAGRAMS FOR GRAPHICAL SOLUTIONS

Graphical and analytical methods for finding the state of polarization complement each
other. The graphical method is fail-safe and is often used to confirm the results obtained
by analytical methods. The graphical method helps visualize the state of polarization for
a given set of parameters and also makes it easier to visualize intermediate stages. On
the other hand, analytical methods provide higher accuracy and are easier to generalize.
This chapter begins with a look at graphical solutions to common polarization problems.

6.2.1 Linearly Polarized Light Through a Retarder

A retarder can be made from any birefringent material, that is, any material whose
refractive index depends on direction. As an example, let us take the uniaxial crystal
characterized by refractive indices ne and no as described in Chapter 4. The orthog-
onal linearly polarized component waves are the e-wave and the o-wave. It is further
assumed that the front and back surfaces of the retarder are parallel to the optic axis
of the crystal, and the propagation direction of the incident light is normal to the
front surface of the retarder. In this situation, the directions of the component e-wave
and o-wave do not separate as they propagate through the retarder; rather, they emerge

Left-handed? Right-handed?

 Ha! Right-handed wave

Right- or left-handedness can only be determined after both the direction of propagation and the
direction of observation have been specified.
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together. Depending on which is smaller, ne or no, one of the component waves moves
through the retarder faster than the other. The relative phase difference is the retar-
dance . The polarization direction of the faster component wave is called the fast
axis of the retarder, and the polarization direction of the slower component wave is
called the slow axis. The emergent state of polarization is the superposition of the two
component waves and will depend on the relative amplitudes of the two component
waves, as well as the retardance.

A circle diagram will be used to find the state of polarization as the incident linearly
polarized light transmits through the retarder. Figure 6.2a shows the configuration. A
linearly polarized wave at azimuth � D 55° is incident onto a retarder with retardance
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Figure 6.2 Graphical solution. (a) Geometry. (b) Circle diagram.
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The difference in the usage of the words retardance and retardation is analogous to that
between transmittance and transmission. Retardance is a measurable quantity representing
the difference in phase angles.

 D 60°. The direction of the fast axis of the retarder is designated by an elongated
F and in this case is oriented in the x direction. The direction of the slow axis is
perpendicular to that of the fast axis and is taken as the y direction. The z direction is
the direction of propagation.

The incident light E is decomposed into the directions of the fast and slow axes,
that is, in the x and y directions. In complex notation, the component waves are

Ex D Aej
�ωtCˇz� 
6.1�

Ey D Bej
�ωtCˇzC� 
6.2�

with

E D ExOi C EyOj
A D jEj cos 55°

B D jEj sin 55°

and the corresponding real expressions are

Ex D A cos
�ωt C ˇz� 
6.3�

Ey D B cos
�ωt C ˇz C � 
6.4�

The phasor circle C1 in Fig. 6.2 represents Eq. (6.1) and C2 represents Eq. (6.2).
As time progresses, both phasors rotate at the same angular velocity as e�jωt (for now
a fixed z), or clockwise as indicated by 0, 1, 2, 3, . . . , 11. The phase of Ey , however,
lags by  D 60° because of the retarder. The projection from the circumference of
circle C1 onto the x axis represents Ex, and that from the C2 circle onto the y axis
represents Ey . It should be noted that the phase angle �ωt in C1 is with respect to the
horizontal axis and �ωt C  in C2 is with respect to the vertical axis.

By connecting the cross points of the projections from 0, 1, 2, 3, . . . , 11 on each
phasor circle, the desired vectorial sum of Ex and Ey is obtained. The emergent light
is elliptically polarized with left-handed or counterclockwise rotation.

Next, the case when the fast axis is not necessarily along the x axis will be treated.
For this example, a retarder with  D 90° will be used. Referring to the geometry
in Fig. 6.3a, the fast axis F is at azimuth  with respect to the x axis, and linearly
polarized light with field E is incident at azimuth �. Aside from the new value of 
and the azimuth angles, the conditions are the same as the previous example.

The only difference in the procedure from that in the previous case is that the fast
axis is no longer in the x direction and the incident field has to be decomposed into
components parallel to the fast and slow axes, rather than into x and y components.
Figure 6.3b shows the circle diagram for this case.
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Figure 6.3 Circle diagram for linearly polarized light entering a retarder ( D 90°), where the azimuth
angle of the retarder is given by . (a) Geometry. (b) Circle diagram.

It is important to recall that the only allowed directions of polarization inside the
crystal are along the fast and slow axes; no other directions in between the two axes
are allowed. This is the reason why the incident field is decomposed into components
along the fast and slow axes.

6.2.2 Sign Conventions

As mentioned in Chapter 1, this book has employed the convention of

e�jωt 
6.5�

rather than

ejωt 
6.6�

which appears in some textbooks. This section attempts to clarify some of the confusion
surrounding signs and the choice of Eq. (6.5) or (6.6). Let us take the example of
the retarder in Fig. 6.2 as the basis for discussion. The expression for the state of
polarization depends critically on the difference between �x and �y of the Ex and Ey

component waves. With the convention of Eq. (6.5), the phases of Ex and Ey for the
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positive z direction of propagation are

�x D ˇz � ωt 
6.7�

�y D ˇz � ωt C  
6.8�

where  D 60°. We will now explain why �y was expressed as ˇz � ωt C  rather
than ˇz � ωt � . The example was defined such that the x direction is the direction
of the fast axis, which means Ex advances faster than Ey , and hence Ex leads Ey .
Let us examine Eqs. (6.7) and (6.8) more closely to see if it is indeed the case that
Ex leads Ey . For simplicity, the observation is made on the z = 0 plane. Both �x and
�y are becoming large negative values as time elapses. At the time when �x D 0, �y

is still a positive number, namely, �y D 60° and �y lags �x by 60°/ω seconds in the
movement toward large negative values. Hence, one can say that Ey is lagging Ex by
60° or Ex is leading Ey by 60°. This confirms that �y D ˇz � ωt C  was the correct
choice to represent Ex leading Ey , for the convention of Eq. (6.5). When Ex leads Ey ,
a left-handed polarization results for  D 60°, as shown in Fig. 6.2.

Now, let us look at the other convention of using ejωt instead of e�jωt. The same
example of the retarder in Fig. 6.2 will be used. When Ex and Ey are propagating in
the positive z direction, the signs of the ˇz and ωt terms are opposite (Chapter 1). Let
�0
x and �0

y denote the phases of the x and y components using the ejωtconvention.

�0
x D �ˇz C ωt 
6.9�

�0
y D �ˇz C ωt �  
6.10�

where  D 60°. As the x direction was specified as the direction of the fast axis,
Eqs. (6.9) and (6.10) have to represent the case where Ex leads Ey by 60°. Let us
verify that this is true. Taking z D 0 as the plane of observation, both �0

x and �0
y

become large positive numbers as time elapses. At the time �0
x D 0, the phase of �0

y is
a negative number and is behind �0

x by 60°/ω seconds in the movement toward large
positive numbers. This is consistent with Ex leading Ey by 60°.

To conclude this example, if Ex leads Ey by 60°, the resulting polarization is left-
handed, regardless of the choice of convention of Eq. (6.5) or (6.6). However, for this
previous statement to be true, the sign of  does depend on the choice of convention.

In Problem 6.1, the same reasoning is applied to the geometry of Fig. 6.3.
Next, the state of polarization of the emergent wave will be investigated as a function

of retardance. For simplicity, the amplitudes of Ex and Ey are kept the same, that is,
B/A D 1, and the fast axis is kept along the x axis. The case of B/A 6D 1 is left for
Problem 6.2. A series of circle diagrams were drawn to obtain the states of polarization
with  as a parameter. The results are summarized in Fig. 6.4.

With  D 0° 
360°�, the state of polarization is linear with azimuth � D 45°. As
 is increased from 0° to 90°, the shape becomes elliptical, growing fatter and fatter
while keeping the major axis always at 45°, and the rotation of polarization always
left-handed. When  reaches 90°, the wave becomes a circularly polarized wave, still
with left-handed rotation. As soon as  passes 90°, the radius in the 45° direction
starts to shrink while that in the 135° direction expands, and the state of polarization
becomes elliptically polarized with its major axis at 135°, but still with left-handed
rotation. This trend continues until  D 180°.
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Figure 6.4 Elliptical polarizations with A D B. The fast axis is in the x direction, and  is the
parameter. represents left-handedness, represents right-handedness, and represents
linear polarization.

Table 6.1 Summary of states of polarization with fixed B=A = 1 for various
retardance values

Retardance
∆

Inclination
q

Sign of sin ∆ + −

Handedness Left Right

45° 45°135° 135°

Shape

90° 180° 270°0° 360°

With  D 180°, the wave becomes linearly polarized again, but this time the direction
of polarization is at 135°. As soon as  exceeds 180°, the wave starts to become
elliptically polarized but with right-handed rotation. As  increases between 180° and
360°, the state of polarization changes from linear (135°) to right-handed elliptical (major
axis at 135°) to right-handed circular to right-handed elliptical (major axis at 45°) to
linear (45°). In this region of , the handedness is always right-handed. The results are
summarized in Table 6.1.
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Figure 6.5 Summary of elliptical polarization with A D B and  as a parameter on the Ey/Ex complex
plane.

Next, a method of classification other than Table 6.1 will be considered. As one
may have already realized, it is the combination of two numbers —B/A and — that
determines the state of polarization of the emergent light from the retarder. These two
numbers, however, are obtainable from the quotient of Eqs. (6.1) and (6.2), namely,

Ey

Ex
D

(
B

A

)
ej 
6.11�

Each point on the complex number plane of Ey/Ex corresponds to a state of polar-
ization. As a matter of fact, this representation will be extensively used in the next
chapter. Figure 6.5 shows such a complex plane. For this example, B/A D 1 and the
states of polarization are drawn on a unit circle for various values of . Figure 6.5
summarizes the results in Fig. 6.4.

Example 6.1 A quarter-waveplate, commonly written as a �/4 plate, is a retarder with
 D 90°. As shown in Fig. 6.6, horizontally linearly polarized light is intercepted by
a �/4 plate whose orientation  is rotated. Draw the sequence of elliptically polarized
waves of the emergent light as the fast axis of the �/4 plate is rotated at  D 0°, 22.5°,
45°, 67.5°, 90°, 112.5°, 135°, 157.5°, 180°, and 202.5°.

Solution The series of circles is drawn in Fig. 6.7. As the correct numbering of the
circles C1 and C2 is crucial to the final result, a few tips are given here on how to
set up the numbering. The convention of e�jωt is being used, so that numbering of
both circles C1 and C2 is in a clockwise sense. Refer to the drawings with  D 22.5°
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Figure 6.6 The state of polarization of the emergent light is observed as the quarter-waveplate is
rotated.

and  D 157.5° as examples. Point P on the horizontal axis represents the tip of
the incident light polarization at t D 0. P is decomposed into points P1 and P2 on
circles C1 and C2, respectively, as shown in Fig. 6.7. If the retardance had been zero

 D 0°�, then P1 and P2 would correspond to point 1 for each of the circles C1 and
C2. Because of the retardance of the �/4 plate, C2 is delayed 90° with respect to C1,
which corresponds to a rotation of C2 by 90° in the counterclockwise direction. P2

now lines up with point 2 of C2. Observe in the case of the �/4 plate, for all diagrams
in Fig. 6.7, the line drawn from point 1 of C1 and the line drawn from point 2 of C2

intersect along the horizontal axis at P. This is a good method for obtaining the correct
numbering.

With  D 0°, the radius of C2 becomes zero, and with  D 90°, that of C1 becomes
zero. The emergent light is identical to the incident light for these cases.

The results are summarized in Fig. 6.8. The major or minor axis is always along
the direction of the fast axis. This is a characteristic of a quarter-waveplate when
the incident light is linearly polarized. First, the major axis follows the fast axis, and
then the minor axis, and then the major axis. They alternate at every 45°. In the region
0 <  < �/2, the emergent light is right-handed, while in the region �/2 <  < � the
emergent light is left-handed. It is worthwhile remembering that the handedness of the
emergent circularly polarized wave alternates every 90° of rotation of the retarder. At

With the case of � D 157.5°, two circles C2 are drawn, one on each side. Either circle
C2 can be used, as long as one makes sure that point 1 on circle C1 as well as on circle C2

correspond to point P if the retardance is momentarily reduced to zero.
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Figure 6.7 Circle diagrams as the �/4 plate is rotated. The incident light is horizontally polarized.
Note: Handedness changes at the azimuth of the retarder,  D 90° and  D 180°.
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Figure 6.8 Transitions of the state of polarization as the �/4 plate is rotated. The incident light is
horizontally linearly polarized.

 D 45°, right-handed circular polarization is obtained, and at  D 135° left-handed
circular polarization is obtained. This is a quick convenient way of obtaining a right
circularly or left circularly polarized wave.

At every 90°, the emergent light becomes identical with the incident light and
is horizontally linearly polarized. Note that the orientation with  D 180° is iden-
tical to that of  D 0°, and the orientation with  D 202.5° is identical to that of
 D 22.5°. �

6.2.3 Handedness

The question of how the direction of the handedness is determined will be resolved.
The instantaneous value �
t� of the direction of polarization with respect to the x
axis is

�
t, z� D tan�1
(
Ey
t�

Ex
t�

)

6.12�
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From Eqs. (6.3) and (6.4), �
t, z� is expressed as

�
t, z� D tan�1
(
B

A

cos C tan
ωt � ˇz� sin�

)

6.13�

For sin  D 0, the azimuth �
t, z� becomes independent of time and location, and a
linearly polarized wave results. With other values of sin , �
t, z� depends on time and
location.

The direction of the movement of �
t, z0� at a fixed point z D z0 is found from the
derivative of Eq. (6.13):

d�
t, z0�

dt
D


 ω sec2
ωt � ˇz�

1 C
(
B

A
[cos C tan
ωt � ˇz0� sin]

)2


 sin 
6.14�

The factor in the large parentheses of Eq. (6.14) is always positive, and d�
t, z0�/dt
is the same sign as sin. When sin is positive, the azimuth �
t, z0� increases with
time and if negative, �
t, z0� decreases. These results are summarized in Eq. (6.15):

Counter clockwise (left-handed) when sin > 0
Linearly polarized when sin D 0
Clockwise (right-handed) when sin < 0


6.15�

For the case of circularly polarized emergent light, that is,

B/A D 1 and sin D š1 
6.16�

the derivative simplifies to

d�
t, z0�

dt
D šω 
6.17�

The angular velocity of the rotation of the polarization is the same as that of the
component wave. The sense of rotation of d�
t, z0�/dt also matches the sign of sin .

It should be noted that Eq. (6.15) is true only when the incident wave is linearly
polarized.

6.2.4 Decomposition of Elliptically Polarized Light

The graphical method for constructing an elliptical polarization has been described. Up
to this point, the incident light has been decomposed into components along the fast and
slow axes of the retarder. In this section, the graphical method will be generalized to
allow decomposition of a given elliptical polarization into an arbitrary set of mutually
perpendicular component waves.

The values B0/A0 and 0 of the newly decomposed waves, however, vary according
to the desired orientation of the decomposed component waves. An example will be
used for explaining the decomposition.
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Example 6.2 Graphically decompose the elliptically polarized wave with B/A D 1
and  D 45° shown in Fig. 6.4 into E0

x polarized at 22.5° and E0
y polarized at 112.5° and

then determine the values of B0/A0 and 0 of the newly decomposed component waves.

Solution Referring to Fig. 6.9, the decomposition is performed as follows:

1. Draw coordinates x0 � y0 in the desired directions.
2. Determine the radius of circles C1 and C2 from the points of the extrema on the

ellipse in the x0 and y0 directions.
3. Extend a line downward parallel to the y0 axis from point 1 on the ellipse to

point 1 on circle C1. Similarly, extend a line to the right parallel to the x0 axis
from the same point on the ellipse to intersect point 1 and point 10 on the circle
C2 (set the point 10 aside for now).

2
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Figure 6.9 Decomposition of an elliptically polarized wave into component waves along arbitrary
orthogonal coordinates.
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4. From point 1 on the ellipse O, follow the ellipse in the direction of rotation of
polarization to point 2. Point 2 is the intersection of the ellipse O with the y0
axis. Draw the extension line from point 2 on the ellipse parallel to the x0 axis
to make point 2 on circle C2.

5. Find point 3, which is the tangent to the ellipse parallel to the y0 axis. Draw an
extension line parallel to the x0 axis from point 3 on the ellipse O to point 3 on
circle C2.

6. Find point 4, which is the intersection of the ellipse O with the y0 axes, and draw
an extension parallel to the x0 axis to point 4 on circle C2.

7. Now, B0/A0 and 0 can be obtained from this graph. The ratio of the radii of C1

and C2 gives

B0/A0 D 0.59

and the angle 0 on circle C2 gives

0 D 55°

The Ey phasor rotates clockwise from the y0 axis, so that E0
y is lagging by

0 D 55° from that of E0
x, consistent with the left-handed rotation of the ellipse

given by Eq. (6.15). As a matter of fact, examination of Fig. 6.9 shows that 0
can be calculated directly from the intersections of B0 and C0 of the ellipse on
the y0 axis:

cos
90° � 0� D OC0

OB0

and

sin0 D OC0

OB0

8. Note that if the phasor on E0
y starts from point 10 and both E0

x and E0
y rotate

in the clockwise sense (�ωt), then the intersections will not form the original
ellipse, and point 10 has to be discarded. �

6.2.5 Transmission of an Elliptically Polarized Wave Through a l=4 Plate

Previous sections dealt with the transmission of linearly polarized light through a
retarder. This section treats the more general case of transmission of an elliptically
polarized incident wave through a retarder.

As shown in Fig. 6.10, let the azimuth and ellipticity of the incident wave be � and
 , respectively. The retarder is again a �/4 plate. The circle diagram method starts
with the decomposition of the incident elliptic field into the field parallel to the fast
axis of the �/4 plate and that parallel to the slow axis. The former component field is
represented by phasor circle C1 and the latter by phasor circle C2.

Next, the retardance is considered. The endpoint P of the phasor vector of the
incident wave is projected onto point 1 of circle C1 and projected onto point 0 of
circle C2. Point 0 on circle C2 is delayed by 90° with respect to point 1 in order to
account for transmission through the �/4 plate. The circumference of the phasor circles
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Figure 6.10 An elliptically polarized wave (solid line) is incident onto a �/4 plate at  D 45°. The
emergent ellipse (dotted line) is obtained by circle diagrams.

is divided into four and numbered 1, 2, 3, and 4 sequentially. The intercepts of the
projections from each of the circles parallel to the fast and slow axes are numbered 1,
2, 3, and 4. The emergent ellipse, shown as a dotted line in Fig. 6.10, is completed by
connecting 1, 2, 3, 4 and the handedness is in the direction of 1, 2, 3, and 4.

6.3 VARIOUS TYPES OF RETARDERS

A waveplate is a retarder with a fixed retardance. Waveplates providing retardances of
360°, 180°, and 90° are called full-waveplates, half-waveplates, and quarter-waveplates,
respectively. They are also written simply as �, �/2, and �/4 plates. Retarders with
adjustable retardance are called compensators.
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6.3.1 Waveplates

Waveplates can be fabricated either from a single piece of birefringent crystal or from
a combination of two pieces of crystal. The difficulty with fabricating a single crystal
waveplate is that the plate has to be made extremely thin. The thickness d for a �/4
plate is calculated as

2�

�
djne � noj D �

2

6.18�

Taking � D 0.63 µm, the values of d for typical birefringent crystals are:

For calcite, d D 0.92 µm (ne D 1.4864, no D 1.6584).
For quartz, d D 17.3 µm (ne D 1.5443, no D 1.5534).
For mica, d D 31.5 µm (ne D 1.594, no D 1.599).

The thickness is in the range of tens of microns.
Even though calcite has a cleavage plane and need not be polished, its brittleness

makes it hard to handle thin pieces. Quartz is not as brittle but requires polishing
because it does not have a cleavage plane. Mica has more favorable properties. It is
not only flexible, but also possesses cleavage planes; however, there is some difficulty
in cleaving at exactly the right thickness. The plate with the desired thickness is selected
among many cleaved pieces.

The stringent requirement of excessively small thicknesses can be avoided by taking
advantage of the rollover of the retardance at every 2� radians. The retardance of a
�/4 plate, for instance, is designed as

2�

�
jne � nojd D

(
2�N C �

2

)

6.19�

where the value of N is normally a few hundred.
With N D 100, the thickness of a quartz �/4 plate is 7 mm. The drawbacks of a

retarder with a large N are a higher sensitivity to temperature and to the angle of
incidence. The increase in the path of a ray with incident angle � compared to the ray
normal to the plate of thickness d is

d �
(

1

cos �
� 1

)
� d

�2

2

6.20�

The value of � that creates a retardance error of �/2 radians is

2�

�
jne � nojd�2

2
D �

2

6.21�

Inserting Eq. (6.19) into (6.21) gives

� � 1p
2N

rad 
6.22�

With N D 100, the cone of the allowed angle of incidence is narrower than 4°.
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Figure 6.11 Structure of a quarter-waveplate.

The second approach to alleviating the thinness requirement is the combination of
two plates with their optical axes perpendicular to each other. Figure 6.11 shows the
construction of a waveplate of this kind. The optical paths �x and �y for Ex and Ey are

�x D 2�

�

d1ne C d2no� 
6.23�

�y D 2�

�

d1no C d2ne� 
6.24�

and the retardance  D �y � �x is

 D 2�

�

d1 � d2�
no � ne� rad 
6.25�

What matters in Eq. (6.25) is the difference in thickness, rather than the total thickness
so that the thickness of each plate can be comfortably large to facilitate polishing.

6.3.2 Compensator

Figure 6.12a shows the structure of a Babinet compensator. Two wedge-shaped bire-
fringent crystals are stacked such that their optical axes are perpendicular to each other.
The apex angle, however, is made small so that the separation of the o- and e-waves
is negligibly small. They can be slid against one another so that the difference in
thicknesses d1 � d2 is adjustable.

Depending on the location of the incident ray, the retardance is varied. At the
location where d1 D d2, regardless of the values of ne and no, both waves Ex and Ey
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Figure 6.12 Comparison between Babinet-type and Soleil-type compensators. (a) Babinet compen-
sator. Depending on the horizontal locations of the incident light, the emergent state of polarization
varies. (b) Soleil compensator. For a given d1 and d2, the emergent state of polarization does not
change as the incident light position is varied.
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go through the same amount of phase shift and the retardance is zero. However, at the
locations where d1 6D d2, the two waves do not go through the same phase shift. If the
crystal is a positive uniaxial crystal and ne > no like quartz and if d1 < d2, then the
phase of Ey lags behind that of the Ex wave. The amount of phase lag, or retardation,
can continuously be adjusted by either shifting the location of the incident light while
keeping the relative positions of the crystal stack fixed, or sliding one crystal against the
other by means of a micrometer while keeping the location of the incident light fixed.

The compensator can be used at any wavelength provided that the light at that
wavelength is not significantly absorbed by the crystal. The compensator also provides
a full range of retardation so that it can be used as a zero-wave, quarter-wave, half-
wave, or full-wave retarder. The sense of circular polarization can also be changed by
changing plus �/4 to minus �/4 of retardation. In some applications, the compensator
is used to measure the retardation of a sample material. Light of a known state of
polarization enters the sample, which causes a change in the polarization of the emer-
gent light. The emergent light is passed through the compensator and the thickness d2

is adjusted to regain the initial state of polarization. From this adjustment of d2, which
is precalibrated in terms of retardance, the retardation of the sample can be determined.

Figure 6.12b shows the structure of a Soleil compensator. The difference between
the Babinet and Soleil compensators is that the Soleil compensator has another block
of crystal so that the thickness d2 is independent of the location of the incident wave.
The top two blocks consist of two wedge-shaped crystals. They can be slid by a
micrometer against one another so that the thickness d2 is adjustable. The thickness
d1 of the bottom block is fixed. With the Soleil compensator, the emergent state of
polarization is independent of the location of incidence.

As mentioned earlier, when N is large, there are stringent requirements on the
collimation of the light entering the retarder, as well as a larger temperature dependence.
However, for the Soleil or Babinet compensator, it is possible to reduce N to zero.

6.3.3 Fiber-Loop Retarder

Bending an optical fiber creates birefringence within the fiber. This is the basis of
the fiber-loop retarder whereby a controlled amount of bend-induced birefringence is
used to change the retardance. An advantage of the fiber-loop retarder controller over
conventional optical devices, such as quarter-waveplates and half-waveplates, is that
the polarization control is achieved without interrupting transmission of light in the
fiber.

When an optical fiber is bent, the fiber is compressed in the radial direction of
the bend and is expanded in the direction perpendicular to it, as shown in Fig. 6.13.
The refractive index of glass is lowered where it is compressed and raised where it
is expanded. In the coordinates shown in Fig. 6.13, the difference between the change
nx in the x direction before and after the bending, and the change ny in the y
direction before and after the bending is calculated as [4,5]

ny � nx D �0.0439n3
( r

R

)2

6.26�

where n is the index of refraction of the core, 2r is the outer diameter of the fiber
(diameter of the cladding), and R is the radius of curvature of the loop as indicated in
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Figure 6.13 Bending of a fiber to create birefringence.

Fig. 6.14. The coefficient 0.0439 was calculated from Poisson’s ratio and the strain-
optical coefficients for a silica glass fiber.

Figure 6.15 shows the structure of a fiber-loop polarization controller based on the
bend-induced birefringence in the fiber [6]. It combines both a �/4 and �/2 fiber-loop
retarder and a polarizer loop. The retarders are made of ordinary single-mode fibers.
The radius of the left-hand side retarder spool is designed such that the phase of the
y-polarized wave is �/2 radians behind that of the x-polarized wave. This spool is the
fiber equivalent of a “quarter-waveplate” and it will be referred to as the �/4 loop. The
right-hand side retarder spool is designed to create a �-radian phase shift, analogous to
a “half-waveplate”, and will be referred to as the �/2 loop. Usually, the two spools have
the same radius, and the �/2 spool has twice the number of fiber turns as the �/4 spool.

The orientation of the fiber loops can be changed as indicated by the arrows in
Fig. 6.15. When conversion of elliptic to linear polarization is desired, the �/4 loop
is oriented so that the elliptically polarized wave going into the loop is converted into
a linearly polarized wave upon exiting the loop (see Section 6.4.3.2). The �/2 loop is
then oriented to rotate the direction of the linear polarization to the desired direction.

Example 6.3 Find the loop radius of a fiber-loop polarization controller for a
� D 1.30 µm wavelength system. The number of turns is N D 4 for the �/4 loop
and N D 8 for the �/2 loop. The diameter of the fiber is 125 µm, and the index of
refraction of the core is n D 1.55.

Solution The radius R of the �/4 loop is first calculated. The difference ˇ in
propagation constants in the x and y directions is

ˇ D k0
n C nx� � k0
n C ny� 
6.27�

where k0 is the free-space propagation constant. Combining Eq. (6.26) with (6.27),

ˇ D 0.0439 k0n
3
( r

R

)2
rad/m 
6.28�
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Figure 6.15 Fiber-loop polarization controller.
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The �/4 condition requires

2�RN Ð ˇ D �

2

6.29�

Equations (6.28) and (6.29) give

R D 0.176 k0n
3r2N 
6.30�

With the parameters provided, the loop radius is

R D 4.95 cm

A choice of radius smaller than R D 1.5 cm is not recommended, because the
transmission loss (as will be mentioned in Section 6.5.3) becomes increasingly
significant as R is decreased. �

6.4 HOW TO USE WAVEPLATES

The waveplate is one of the most versatile optical components for manipulating the
state of polarization. Various applications of the waveplate will be summarized from
the viewpoint of laboratory users.

6.4.1 How to Use a Full-Waveplate

A full-wave plate (� plate) combined with an analyzer (polarizer) functions like a
wavelength filter. The retardance of any thick waveplate critically depends on the
wavelength of light. This can be seen from Eq. (6.19), which gives the expression for
the retardance of a thick quarter-waveplate. The expression for the retardance of the
thick full-waveplate can be obtained by substituting 2� for �/2 on the right-hand side
of Eq. (6.19).

The operation of the wavelength filter is described as follows. Multiwavelength
linearly polarized light is incident onto the full-waveplate. The azimuth of the incident
light is chosen so that both fast and slow component waves propagate through the full-
waveplate. Only those wavelengths that satisfy the full-wave retardance condition will
emerge as linearly polarized waves. The transmission axis of the analyzer is oriented
in the same direction as the azimuth of the incident light, so that the emergent linearly
polarized waves experience the least amount of attenuation on passing through the
analyzer. For all other wavelengths, the state of polarization is changed by going
through the full-waveplates, and these will be attenuated on passing through the
analyzer.

By adding additional full-waveplate and analyzer pairs, a narrower linewidth
wavelength filter is obtainable. Such filters are the Lyot–Ohman and MSolic filters [1,13].

6.4.2 How to Use a Half-Waveplate

The half-waveplate can be used to change the orientation and/or the handedness of a
polarized wave. The case of a linearly polarized incident wave is first considered. Let
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the vector OP of the incident E wave be in the vertical direction, and let the direction
of propagation be into the page. The plane of the half-waveplate is in the plane of
the page. Let the fast axis of the half-waveplate (�/2 plate) be oriented at an angle �
from the direction of polarization, as shown in Fig. 6.16a. The incident vector OP is
decomposed into OQ and QP in the directions of the fast and slow axes, respectively.
After transmission through the �/2 plate, the direction of the vector QP is reversed to
QP

0
, while the vector OQ remains unchanged. Alternatively, OQ is reversed and PQ

is unchanged. The resultant vector for the transmitted wave becomes the vector OP
0
.

The emergent vector OP
0

is a mirror image of the incident vector OP with respect to
the fast axis. Another way of looking at the emergent wave is to say that the incident
vector has been rotated toward the fast axis by 2�. For instance, a vertically polarized
incident wave can be converted into a horizontally polarized wave by inserting the �/2
plate at an azimuth angle of 45°.

Next, the case of elliptically polarized incident light is considered. Let us say that
the direction of the major axis is vertical and the handedness is right. The direction of
the fast axis is � degrees from the major axis of the ellipse. As illustrated in Fig. 6.16b,
the incident elliptically polarized wave is decomposed into components parallel to the
fast and slow axes, represented by circles C1 and C2, respectively. The points 1,2,3,4
on the circle C1 correspond to points 1,2,3,4 on the circle C2.

After transmission through the �/2 plate, the points on circle C2 (slow axis) lag
the points on circle C1 (fast axis) by 180°. This is shown in Fig. 6.16b by moving the
points 1,2,3,4 on C2 diametrically opposite, as indicated by 10, 20, 30, and 40, while the
points 1,2,3, and 4 on C1 remain unchanged. The emergent wave is drawn with the
new combination. The emergent wave is elliptically polarized with the same shape but
rotated from that of the incident wave. The emergent wave looks like a mirror image
with respect to the fast axis of the �/2 plate. The handedness is reversed. Alternatively,
the emergent ellipse also looks as if it were made by rotating the incident ellipse toward
the fast axis by 2�, then reversing the handedness.

The �/2 plate does not change the shape of the ellipse, only the orientation and
handedness. When just a simple change of handedness is desired, one of the axes of
the ellipse is made to coincide with the fast axis of the �/2 plate.

6.4.3 How to Use a Quarter-Waveplate

The quarter-waveplate is probably the most popular of the waveplates. It has a
variety of uses including polarization converter, handedness interrogator, and retardance
measuring tool.

6.4.3.1 Conversion from Linear to Circular Polarization
by Means of a l=4 Plate
Figure 6.17 shows three configurations for converting a linearly polarized wave into
either a circularly or elliptically polarized wave by means of a quarter-waveplate.
In the figure, the incident light is vertically polarized and propagating from left to
right. In Fig. 6.17a, looking into the source of light, the direction of the polarization
of the incident light is 45° to the left of the fast axis of the quarter-waveplate.
With this configuration, the emergent light is a left-handed circularly polarized wave
(Problem 6.3).
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Figure 6.17 Converting a linearly polarized wave by means of a �/4 plate. (a) Linear to left-handed
circular polarization. (b) Linear to right-handed circular polarization. (c) Linear to elliptical polarization.
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Figure 6.17b is similar to Fig. 6.17a except that the direction of polarization of the
incident wave is 45° to the right of the fast axis of the quarter-waveplate. The emerging
light is a right-handed circularly polarized wave.

In summary, looking toward the direction of the source, if the incident light
polarization is oriented 45° to the left of the fast axis, the handedness is also left-
handed. On the other hand, if the incident light polarization is oriented 45° to the right
of the fast axis, the handedness becomes also right-handed. Thus, for the same linearly
polarized incident wave, a change in the handedness of the emergent light is achieved
by just rotating the quarter-waveplate by 90° in either direction.

An elliptically polarized wave is generated by orienting the fast axis at an azimuth
angle other than 45° with respect to the direction of the incident light polarization, as
shown in Fig. 6.17c.

Inspection of the results shown in Fig. 6.17 and the answers to Problem 6.3 reveals
a shortcut method to drawing the emergent wave from a �/4 plate when the incident
light is linearly polarized. Figure. 6.18 illustrates this shortcut method, and the steps
are explained below.

Step 1. Draw in the azimuth � of the input light and  of the fast axis of the �/4
plate.

Step 2. Draw the line ef perpendicular to the fast axis of the �/4 plate.
Step 3. Complete the rectangle efgh. The center of the rectangle coincides with the

origin.
Step 4. The ellipse that is tangent to this rectangle represents the polarization of the

emergent light. If E is to the left of the fast axis, the emergent wave has left-handed
elliptical polarization.

6.4.3.2 Converting Light with an Unknown State of Polarization
into Linearly Polarized Light by Means of a l=4 Plate
Figure 6.19 shows an arrangement for converting an elliptically polarized wave into
a linearly polarized wave. The incident light beam goes through a �/4 plate, a �/2
plate, and an analyzer and finally reaches the photodetector. If the fast axis of the
quarter-waveplate is aligned to the major (or minor) axis of the elliptically polarized
incident light, the output from the quarter-waveplate will be linearly polarized. This
fact is detailed in Fig. 6.20, where elliptically polarized light is decomposed into
two component fields perpendicular and parallel to the major axis. The phase of the
perpendicular component is delayed from that of the parallel component by 90° (see
also Problem 6.4). If the fast axis of the quarter-waveplate is aligned with the delayed
perpendicular component, the two component waves become in phase and the emergent
wave is a linearly polarized wave as indicated by the vector OP.

If the fast axis of the �/4 plate is further rotated by 90° in either direction, again
the emergent wave is a linearly polarized wave as indicated by vector OP

0
.

A method for aligning the �/4 plate in the desired location will now be explained.
Besides the �/4 plate, a �/2 plate and an analyzer are added as shown in Fig. 6.19. The
transmission axis (major principal axis) of the analyzer is for now set in the vertical
direction. The output of the analyzer is monitored with a photodetector. The function
of the �/2 plate is to rotate the direction of the light polarization emerging from the
�/4 plate.
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Figure 6.18 A shortcut method of finding the state of polarization when linearly polarized light is
incident onto a �/4 plate.
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Figure 6.19 Converting from elliptical to linear polarization.
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Figure 6.20 Converting an elliptically polarized wave into a linearly polarized wave by means of a
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First, with an arbitrary orientation of the �/4 plate, the �/2 plate is rotated. As
the �/2 plate is rotated, the value of the minimum output from the photodetector is
noted. This is the beginning of an iterative procedure aimed at producing a sharp
null in the photodetector output. As the next step, the �/4 plate is rotated by a small
amount in one direction. The �/2 plate is again rotated. The new minimum output
from the photodetector is compared to the previous minimum. If the new minimum is
smaller, the �/4 plate was turned in the correct direction. The procedure of rotating
the �/4 plate by a small amount followed by a rotation of the �/2 plate is repeated
until the absolute minimum has been found. Only when the input to the �/2 plate is
linearly polarized is its output linearly polarized, and the photodetector output shows
sharp nulls where the linearly polarized output from the �/2 plate is perpendicularly
polarized to the transmission axis of the analyzer.

Once a linearly polarized wave and a sharp null are obtained, the direction of
polarization can be changed to the desired direction by rotating the �/2 plate.

The fiber equivalent of Fig. 6.19 is shown in Fig. 6.15. The fiber-loop �/4 plate can
be treated as a conventional �/4 plate whose surface is perpendicular to the plane of
the fiber loop. The alignment procedure for the conventional waveplates in Fig. 6.19
applies equally to the fiber-loop waveplates in Fig. 6.15. The direction of the fast axis
of the �/2 and �/4 loops lies in the plane of the fiber loop as explained in Section 6.3.3.

6.4.3.3 Measuring the Retardance of a Sample
Figure 6.4 summarizes the sequential change in the state of polarization as the
retardance  is increased from 0° to 360° for a linearly polarized initial state with
B/A D 1. By the same token, if linearly polarized light with B/A D 1 is incident on a
birefringent sample of known orientation but unknown retardance, the retardance can
be determined from the state of polarization of the emergent light.

Figure 6.21 shows an arrangement of Senarmont’s method for measuring the
retardance of a sample. The incident light is linearly polarized at � D 45° with respect
to the x–y axes and the amplitudes of the x and y components are the same, namely,
B/A D 1. Either the fast or slow axis of the crystal is aligned to the x axis (a method
for locating the fast or slow axis can be found in Problem 6.10). The emergent light is
an elliptically polarized wave with a 45° (or 135°) azimuth angle. The ellipticity tanˇ,
which is the ratio of the major axis to the minor axis, depends on the value of the

y y y y y

Ey

Ex

E x
x

x x

O O

S
F

45°
45° + b

b
135°

Sample l/4 Plate Analyzer

Figure 6.21 Measurement of the retardance  of a crystal by Senarmont’s method.
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retardance and, as obtained in Problem 6.11,

 D 1
2ˇ 
6.31�

The elliptically polarized wave further enters a �/4 plate whose fast axis orientation
is set at 45° or 135°. The emergent light from the �/4 plate is linearly polarized
because the fast axis is aligned to the major or minor axis of the ellipse as mentioned
in Section 6.4.3.2. The azimuth angle of the light emergent from the �/4 plate is
� D 45° C ˇ. The value of ˇ can be found from the direction of the sharp null when
rotating the analyzer. Finally,  is found from ˇ by Eq. (6.31).

It is important to realize that the direction of the major or minor axis of the
elliptically polarized light incident to the �/4 plate is always at � D 45° or 135° if
B/A D 1, and the fast axis of the sample is along the x axis, regardless of . Once the
fast axis of the �/4 plate is set to � D 45° or 135°, the �/4 plate need not be adjusted
during the measurement. The only adjustment needed is the direction of the analyzer.
This is a noble feature of Senarmont’s method.

6.4.3.4 Measurement of Retardance of an Incident Field
The previously mentioned Senarmont’s method used a priori knowledge of the azimuth
angle of 45° of the emergent light from the sample, but in this case, the retardance
between the x and y directions of an incident wave with an arbitrary state of polarization
will be measured.

The measurement consists of three steps using a polarizer, a �/4 plate, and a
photodetector. Let an arbitrary incident wave be represented by Eqs. (6.1) and (6.2).
The arrangement is similar to the one shown in Fig. 6.21, but the sample is removed.

Step 1. First, only the polarizer, which is used as an analyzer, and the photodetector are
installed. With the transmission axis of the analyzer along the x axis, the transmitted
power is measured. The transmitted power Ix is expressed as

Ix D 1
2 jExj2 D 1

2A
2

where an ideal analyzer is assumed (i.e., lossless transmission of the through
polarization and complete rejection of the cross polarization). Next, the transmission
axis of the analyzer is rotated along the y axis, and the transmitted power is
measured. The transmitted power Iy is expressed as

Iy D 1
2 jEyj2 D 1

2B
2

The total transmitted power I0 is

I0 D Ix C Iy

Next, the transmission axis of the analyzer is rotated at a 45° azimuth angle to the
x axis and the transmitted light power is measured. Both Ex and Ey contribute to
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the component along the analyzer transmission axis:

I1 D 1

2

∣∣∣∣ 1p
2
Ex C 1p

2
Ey

∣∣∣∣
2

D 1
4 jA C Bejj2

D 1
4 
A C Bej�
A C Be�j�

D 1
4 
A

2 C B2 C 2AB cos�

Step 2. The �/4 plate is inserted in front of the analyzer. The fast axis of the �/4
plate is parallel to the y axis, and the analyzer is kept with its transmission axis at
45° to the x axis. The transmitted power is

I2 D 1

2

∣∣∣∣ 1p
2
Ex C 1p

2
Eye

�j90°
∣∣∣∣
2

D 1
4 
A

2 C B2 C 2AB sin�

From these measured values of I0, I1, and I2, the retardance is

 D tan�1
(

2I2 � I0

2I1 � I0

)

6.5 LINEAR POLARIZERS

A linear polarizer favorably passes the component of light polarized parallel to the
transmission axis and suppresses the component polarized parallel to the extinction
axis. The extinction axis is perpendicular to the transmission axis.

The three major types of linear polarizers are the (1) dichroic polarizer,
(2) birefringence polarizer, and (3) polarizer based on Brewster’s angle and scattering.
Each type has merits and demerits and a choice has to be made considering such
parameters as transmission loss, power of extinction, wavelength bandwidth, bulkiness,
weight, durability, and cost.

6.5.1 Dichroic Polarizer

Figure 6.22 shows an oversimplified view of the molecular structure of a dichroic
sheet polarizer. It is analogous to a lacy curtain suspending an array of long slender
conducting molecules.

The dichroic sheet is quite thin and is normally laminated on a transparent substrate
for strength. Transmission through the dichroic sheet depends on the direction of
polarization of the incident wave [7,8].

When the axis of a conducting molecule is parallel to the E field, the situation is
similar to a linear dipole antenna receiving a radio signal. A current is induced in
the axial direction and can flow freely along the molecule except at both ends. At
the ends, the axial current has to be zero and the direction of the current has to be
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Figure 6.22 Dichroic linear polarizer sheet. (a) Extinction. (b) Transmission.

The “dichroic” polarizer has to do with “two colors.” Historically [1], certain crystals
displaying polarizing properties were observed to change color when they were held up to
sunlight and were viewed with a polarizer. The color changes occur when the polarizer is
rotated.

Although somewhat of a misnomer, the term dichroic has persisted. At present, any sheet
whose absorption depends on the direction of polarization of the incident light is called a
dichroic sheet. Another example is the dichroic filter. It reflects at a specified wavelength
and transmits at another specified wavelength, while maintaining a nearly zero coefficient of
absorption for all wavelengths of interest.

reversed, resulting in a current standing wave Iz with a sinusoidal distribution along
the molecular axis as shown in Fig. 6.23a.

When, however, the direction of the E field is perpendicular to the axis of the
molecule, the current is induced in a diametrical direction. The current has to be zero
at the left and right edges of the molecule. The magnitude of the excited current cannot
be large because the zero current boundary conditions are located so close to each other.
The distribution of the current Ix has a quasitriangular shape with a short height. The
magnitude of the induced current for a perpendicular orientation of the E field is small
compared to that for a parallel orientation of the E field, as shown in Fig. 6.23b.

Regardless of the conductivity of the molecule, the transmitted light is attenuated
as long as the direction of the E field is parallel to the molecular axis. For resistive-
type slender molecules, the induced current is converted into heat and there is no
reflected wave. For slender molecules that are conductors, the induced current sets up
a secondary cylindrical wave whose amplitude is identical to that of the incident wave
but whose phase is shifted by 180° in order that the resultant field on the surface of the
molecule vanishes, thereby satisfying the boundary condition of a perfect conductor.
In the region beyond the molecule, both the transmitted and the 180° out-of-phase
secondary wave propagate in the same direction but in opposite phase, and they cancel
each other. When the incident wave is from the left to the right, there is no emergent
wave in the region to the right of the molecule, as illustrated in Fig. 6.24. In the region
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Fleming’s shaking rope.

Sir John A. Fleming (1849–1946) used to explain electromagnetic wave phenomena by
making analogies with waggling a rope, and it is tempting to apply a rope analogy to the
case of the slender molecule polarizer. Imagine that a rope is stretched horizontally through
a set of vertical bars. If on one side of the bars, the rope is shaken up and down to produce
a wave propagating with its crests in the vertical direction, the wave will pass through the
bars unhindered. On the other hand, if the rope is shaken left and right so that its crests
are in the horizontal direction, the propagating wave is blocked by the bars. This analogy is
opposite to reality in the case of light transmission through the slender molecule polarizer.
The transmission axis is perpendicular to the bars (axis of slender molecules), and the
extinction axis is parallel to the bars. The shaking rope analogy is shaky in this case.

in front of the molecule, these two waves are propagating in opposite directions, and
there exists a standing wave in the region to the left of the molecule in Fig. 6.24.

As mentioned earlier, when the E field is perpendicular to the molecule axis, the
degree of excitation of the induced current Ix on the molecule is small and the wave
can propagate through the molecule curtain with minimum attenuation.

The quality of a polarizer is characterized by two parameters: the major principal
transmittance k1 and the minor principal transmittance k2. k1 is the ratio of the intensity
of the transmitted light to that of the incident light when the polarizer is oriented to
maximize the transmission of linearly polarized incident light. k2 is the same ratio but
when the polarizer is oriented to minimize transmission. The values of k1 and k2 are
defined when the incident light direction is perpendicular to the surface of the polarizer.
The performance of the polarizer is optimum at this angle of incidence.

The value of k2 can be reduced by increasing the density of the slender molecules,
but always with a sacrifice of a reduction in k1. Figure 6.25 shows the characteristic
curves of k1 and k2 for a typical dichroic sheet polarizer. Even though the transmission
ratio defined as Rt D k1/k2 can be as large as 105, it is hard to obtain the ideal value of
k1 D 1 with a dichroic polarizer sheet. On the other hand, the birefringent-type polarizer
can provide both a large transmission ratio and a value of k1 very close to unity.

The advantages of the dichroic sheet are that it is thin, lightweight, and low-
cost, but the disadvantages are low k1 values (70% is common) and relatively low
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Figure 6.23 Difference in the excited current on the conducting molecule with parallel and
perpendicular E. (a) E is parallel to the axis. (b) E is perpendicular to the axis.

power handling capability due to absorption. The transmission ratio deteriorates in the
ultraviolet region, � < 300 nm.

Example 6.4 Find the state of polarization of the emergent wave Ei for the following
combinations of incident field E0 and polarizer.
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Figure 6.24 Top view of the fields incident onto and scattered from a slender perfectly conducting
molecule.

(a) The incident light is linearly polarized, and a poor-quality polarizer is used with
major and minor transmittances

p
k1 D 1 and

p
k2 D 0.5, respectively.

(b) This situation is the same as case (a) but with an elliptically polarized incident
wave.

(c) The incident wave is elliptically polarized in the same way as case (b) but the
polarizer has ideal characteristics, namely,

p
k1 D 1 and

p
k2 D 0. Draw the

locus of the major axis of the emergent light as the polarizer is rotated in its
plane.

Solution
The solutions are shown in Fig. 6.27.
(a) Figure 6.27a shows the configuration. The transmission axis of the polarizer is

shown by an extended T. The incident field E0 is decomposed into components E01
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Figure 6.25 Characteristics of type HN38 Polaroid polarizer. (From Polaroid Corporation Catalog).

The concept of an absorption indicatrix is shown in Fig. 6.26. It is used to analyze the
transmission of a polarized wave through a bulk medium that possesses an absorboanisotropy
like a dichroic crystal. The method for using this indicatrix is similar to that used for the
refraction indicatrix presented in Section 4.5.2. Referring to Fig. 6.26, consider the case
when light propagating along the direction ON is incident onto an absorboanisotropic
crystal. The intercept of the plane containing the origin and perpendicular to ON with
the ellipsoid generates the “cross-sectional ellipse.” The lengths of the vectors a1 and
a2 of the major and minor axes represent absorbancies in these two directions of
polarization.

If the direction of polarization of the incident light is arbitrary, the E field of the incident
light is decomposed into components parallel to a1 and a2, which suffer absorbancies a1

and a2, where a1 and a2 are the major and minor axes of the ellipse. The amplitude of the
emergent light is the vectorial sum of these two components [9].

The shape of the ellipsoid of the absorption indicatrix is significantly more slender than
that of the refraction indicatrix in Section 4.5.2.

and E02, which are parallel and perpendicular to the transmission axis of the polarizer.
Their phasor circles are C1 and C2. The incident field being linear, the phasors are in
phase and points 1, 2, 3, and 4 are numbered accordingly. The E02 component suffers
an attenuation of

p
k2 D 0.5, which is represented in Fig. 6.27a by shrinking circle C2.

On C2, the points 1, 2, 3, and 4 shrink to 10, 20, 30, and 40. Successive intersections of
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Figure 6.26 Absorption indicatrix used in finding the transmission through an absorboanisotropic
crystal.

points 1, 2, 3, and 4 of circle C1 and points 10, 20, 30, and 40 of the shrunken circle C2

produce the state of polarization of the emergent wave.
The emergent wave is linearly polarized but the azimuth angle is not the same as

that of the incident wave.
(b) Circles C1 and C2 are set up in a similar fashion to that of part (a), the only

difference being that points 1, 2, 3, and 4 of the linear incident light are replaced by
points 1, 2, 3, and 4 of the incident ellipse, as shown in Fig. 6.27b. The emergent light
polarization is formed from points 1, 2, 3, and 4 of C1 and points 10, 20, 30, and 40of
the shrunken C2.

The azimuth angle of the emergent wave is closer to the azimuth of the polarizer
than the incident wave.

(c) Figure 6.27c explains the case with an ideal polarizer. Since k2 D 0, the radius
of the circle C2 shrinks to zero, and the amplitude of the emergent wave is determined
solely by the radius of circle C1. The emergent light is linearly polarized and the
direction of the emergent E field is always along the direction of the transmission axis.
Referring to Fig. 6.27c, the solid line ellipse represents the incident ellipse. When the
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Figure 6.27 Waves with various states of polarization are incident onto a polarizer. (a) A linearly
polarized wave is incident onto a polarizer with k1 D 1.0 and k2 D 0.5. (b) An elliptically polarized wave
is incident onto a polarizer with k1 D 1.0 and k2 D 0.5. (c) Locus of the amplitude of the emergent
wave when an ideal polarizer is rotated.

azimuth angle of the polarizer is at , the direction of the emergent linear polarization
is also at � D , and the amplitude is represented by Oh, which is perpendicular to
the tangent to the incident ellipse. The dashed line in the figure shows the locus of the
field vector as the polarizer is rotated. The position of h in Fig. 6.27c corresponds to
10 when k2 D 0 in Fig. 6.27b. It should be noted that the answer is not an ellipse.

�
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6.5.2 Birefringence Polarizer or Polarizing Prism

As mentioned in Chapter 4, there are only two possible directions of polarization
(e- and o-waves) inside a uniaxial crystal. No other directions of polarization are
allowed. A birefringence polarizer, which is sometimes called a prism polarizer, creates
a linearly polarized wave by eliminating one of the two waves. One type makes use
of the difference in the critical angles of total internal reflection for e- and o-waves.
Another type makes use of the difference in the angle of refraction for the two waves.
A significant advantage of the birefringence polarizer over a simple dichroic polymer
polarizing sheet is its high transmission coefficient of 90% to 95% or better compared
to 70% for the polarizing sheet. Moreover, the polarizing beamsplitter gives access to
beams of each polarization.

Figure 6.28 shows a cut-away view of the Nicol prism. A calcite crystal is sliced
diagonally and is cemented back together with Canada balsam cement whose index
of refraction is n D 1.55. Since the indices of refraction of calcite are ne D 1.486 and
n0 D 1.658 at � D 0.58 µm, the e-wave does not encounter total internal reflection and
exits through the crystal to the right. The crystal is sliced at such an angle that total
internal reflection of the o-wave takes place at the interface between the calcite crystal
and the Canada balsam cement. The reflected o-wave is absorbed by the surrounding
dark coating.

Even though the Nicol prism is one of the best-known polarizers because of its long
history, the Nicol prism has the following disadvantages: the Canada balsam cement
absorbs in the ultraviolet region of the spectrum, the power handling capability is
limited by the deterioration of the cement, and the emergent beam is laterally displaced
from the position of the incident beam. A favorable characteristic of the Nicol prism
is its reasonable field of view of 28°.

The Glan–Foucault or Glan–Air polarizing prism is shown in Fig. 6.29a. This
type eliminates the use of Canada balsam cement so as to avoid absorption in the

Arbitrarily
polarized
light

Canada balsam cement n = 1.55

Calcite crystal no = 1.658
                       ne = 1.486

Direction of the
optic axis

o-Wave
e-Wave

71°

48°

Figure 6.28 Cutaway view of the Nicol prism.
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ultraviolet region and the limitation on the power handling capability of the prism.
As shown in Fig. 6.29a, the front surface of the prism is cut parallel to the optic axis
and perpendicular to the incident beam. The angle of the slanted airgap is chosen
such that total internal reflection takes place for the o-wave. A polarizing prism
normally discards the o-wave by the use of an absorptive coating. However, if desired,
the side surface of the polarizer can be polished to allow the o-wave to exit. The
o-wave from this polarizing beamsplitter can be used for monitoring purposes or
for providing an additional source with an orthogonal direction of polarization to

Direction of
optic axis

e-Wave

e-Wave

o-Wave

o-Wave

Arbitrarily
polarized light Air gap

(a)

(b)

Figure 6.29 Glan–Foucault prism polarizer/beamsplitter and its modification. (a) Cutaway view of
the Glan–Foucault prism polarizer/beamsplitter. (b) Same as (a) but modified by Taylor for better
transmission.
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the e-wave. An additional merit of this prism is its short longitudinal dimension.
The Glan–Air prism, however, suffers from the demerits of a narrow acceptance
angle of 15° to 17° and multiple images caused by multiple reflections in the
airgap.

The Glan–Faucault prism was modified by Taylor who rotated the crystal axis by
90°, as illustrated in Fig. 6.29b. With this orientation Brewster’s angle can be used to
minimize the reflection. The value of k1 was significantly increased.

The Glan–Thomson polarizing prism has the same geometry as the Glan–Foucault
prism but uses Canada balsam cement in place of the airgap in order to increase the
viewing angle to 25° to 28° at the cost of the aforementioned drawbacks of Canada
balsam cement.

Several other types of polarizing prisms are similar and all are shown for comparison
in Fig. 6.30. The direction of refraction is determined by assuming that a negative
birefringent crystal 
ne < no� like calcite is used. The angular separation of the o-
and e-waves is made by different arrangements of the optic axes of two pieces of
the same crystal material. The Rochon, Senarmont, and Ahrens polarizing prisms do
not deviate the direction of one of the transmitted lightwaves from the direction
of the incident light. With reference to Fig. 6.30, the deviated transmitted light
from the Rochon prism is vertically polarized while that of the Senarmont prism
is horizontally polarized. The Wollaston polarizing prism maximizes the angular
separation between the two beams because what is labeled the output o-wave is,
in fact, the e-wave in the first prism and both waves are refracted at the interface.
The geometry of the Cotton-type prism is almost the same as the bottom piece of
the Ahrens type, except for the larger apex angle of the prism for optimization of
operation.

Prisms based on refraction create aberrations when they are introduced in a
convergent beam. This is because the vertical geometry is not the same as the horizontal
geometry, and the angle of refraction from the boundaries in the vertical direction is
different from that of the horizontal direction just like a cylindrical lens.

6.5.3 Birefringence Fiber Polarizer

Next, the fiber-loop birefringence polarizer will be explained. When an optical fiber
is bent too tightly, the light in the core starts to leak out. The amount of leakage,
however, depends on the direction of polarization of the light because the change in the
refractive index caused by the bending is not isotropic. The fiber-loop-type polarizer
makes use of this property. Needless to say, the fiber-loop polarizer is especially
advantageous for use in fiber-optic communications because polarization control is
achieved without having to exit the fiber and transmission of light in the fiber is
uninterrupted.

When an optical fiber is bent, the fiber is compressed in the radial direction of
the bend and is expanded in the direction perpendicular to it, as shown at the top of
Fig. 6.13. The refractive index of glass is lowered where it is compressed and raised
where it is expanded. The differential stress creates anisotropy in the refractive indices
in the two aforementioned directions in the fiber.

Both single-mode and polarization-preserving fibers can be used for fabricating
a polarizer, but better results are obtained with polarization-preserving fibers which
already have birefringence even before bending the fibers. With ordinary single-mode
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Figure 6.30 Various types of birefringence polarizers (polarizing prisms) using calcite. (a) Rochon.
(b) Wollaston. (c) Senarmont. (d) Ahrens. (e) Cotton.
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fibers, the fiber has to be bent over a much tighter radius to achieve the desired effect
and, consequently, is prone to breakage. Birefringence in the Panda-type polarization-
preserving fiber, shown in the inset in Fig. 6.31, is produced by contraction of the glass
with a higher thermal expansion coefficient in the “eyes” region when the drawn fiber
solidifies. The index of refraction nx seen by the wave polarized in the direction of
the “eyes” is raised due to the expansion of the core and that of ny seen by the wave
polarized in the direction of the “nose” is lowered due to the contraction of the core.
The slow axis is in the direction of the “eyes” and the fast axis is in the direction of
the “nose.”

2b

2a

x

0 a b 10 20 30
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nx  with  bending

nx = ny with no strain (normal fiber)

ny  with  bending
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y

∆x ∆y
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Figure 6.31 Refractive index profiles of a Panda fiber. (a) Profile along the x axis. (b) Profile along
the y axis. (After K. Okamoto, T. Hosaka, and J. Noda [10].)
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By comparing the inset in Fig. 6.31 with Fig. 6.13, one soon notices that the same
effect caused by the contraction of the “nose” can be generated by just bending the
fiber in the y direction. As a result, the birefringence of the Panda fiber is even more
enhanced when the Panda fiber is bent in the y direction.

Figure 6.31 shows the calculated profile of the indices of refraction when the Panda
fiber is bent [10]. The distribution along the “eyes” direction of the Panda fiber is
shown in Fig. 6.31a while that along the “nose” direction is shown in Fig. 6.31b.

As long as one stays on the line connecting the centers of the “eyes” (x axis) the
strains inside the core and the cladding are identical and the difference between nx

and ny , which is directly related to the strain, is the same in the core and cladding, as
shown in Fig. 6.31a.

Along the “nose” direction (y axis), however, the amount of strain varies
significantly with the distance from the center of the fiber, and the difference between
nx and ny also varies with the radius in the y direction. As shown in Fig. 6.31b, even
though ny is smaller than nx inside and on the periphery of the core, ny grows bigger
than nx in the region beyond 20 µm. The difference y between ny in the core and
ny in the cladding also decreases with y, whereas the difference x between nx in
the core and nx in the cladding stays the same with y. The evanescent wave exists
in these regions and a slight decrease in y significantly increases the bending loss
of the Ey component [10]. Thus, the emergent light is predominantly Ex polarized in
the direction of the “eye.” It is this anisotropic strain distribution that makes the fiber
polarizer work.

The tensile stress due to the Panda “eyes” can be enhanced further by increasing the
bending of the fiber in the y direction. Excessive bending, however, starts incurring the
transmission loss of the x-polarized wave. The amount of bending has to be determined
from a compromise between the transmittance k1 and the extinction ratio (defined
as the inverse of the transmission ratio) R. A transmission loss of 0.5 dB with an
extinction ratio R D �30 dB is obtainable for a wide wavelength range by 10 turns of
a 3-cm-diameter Panda fiber loop [11].

It is difficult to know the orientation of the Panda eyes unless its cross section is
examined under a microscope. The use of a special Panda fiber whose cross section is
oval shaped to indicate the orientation of the Panda “eyes” makes it easier to bend the
fiber into a coil while maintaining the right bending orientation [10].

6.5.4 Polarizers Based on Brewster’s Angle and Scattering

Brewster’s angle is another phenomenon that depends on the direction of polarization
of light and can be utilized to design a polarizer. Brewster’s angle of total transmission
exists only for a lightwave whose direction of polarization is in the plane of incidence.

Figure 6.32 shows a pile-of-plates polarizer that is based on Brewster’s angle.
Brewster’s condition is

tan �B D n1

n0

The wave polarized in the plane of incidence transmits through totally without
reflection. The wave polarized perpendicular to the plane of incidence also transmits
through, with some loss due to reflection. To be effective as a polarizer, several plates
are necessary in order to increase the loss due to reflection of the wave polarized
perpendicular to the plane of incidence.
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Figure 6.32 Pile-of-plates polarizer.

Light with high purity of linear polarization is obtainable from an external cavity-
type gas laser such as shown in Fig. 14.1. This type of laser uses a Brewster window,
and in the case of the He–Ne laser, the light goes back and forth more than 2000
times before exiting the cavity. This is equivalent to a pile of 2000 plate polarizers,
and light with very pure linear polarization is obtained.

6.5.5 Polarization Based on Scattering

A rather unconventional polarizer makes use of the nature of Rayleigh scattering.
Scattering from a particle smaller than the wavelength of light creates polarized light.
Referring to Fig. 6.33, the light scattered in the direction normal to the incident ray
is linearly polarized. The vertically polarized component of the incident light cannot

N2 or CO2

Figure 6.33 Polarizer based on Rayleigh scattering.
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be scattered in the vertical direction because the E field would become parallel to
the direction of propagation. The light scattered toward the vertical direction is highly
horizontally polarized light, and the light scattered toward the horizontal direction is
highly vertically polarized light.

A chamber filled with either N2 or CO2 molecules makes a polarizer. Even though
the amount of the scattered light is small, the purity of the polarization is good.
The direction of polarization is perpendicular to the plane containing the path of
the light from the source to the observer by way of the scatterer, as indicated in
Fig. 6.33.

6.6 CIRCULARLY POLARIZING SHEETS

A polarizer sheet laminated with a �/4 plate sheet is sometimes marketed as a circularly
polarizing sheet. Its usages are presented here.

6.6.1 Antiglare Sheet

In this section, a method of preventing glare using a circularly polarizing sheet will be
described. Figure 6.34 shows a circularly polarizing sheet being used as an antiglare
cover for a radar screen. Figure 6.35 explains the function of the sheet, and for
purposes of the explanation, the polarizer and the �/4 plate sheet are separated.
Figure 6.35a shows the state of polarization of the light incident on to the radar
surface, and Fig. 6.35b shows the state of polarization of the reflected wave from
the radar screen. In Fig. 6.35a, the direction of the polarization is 45° to the left
of the fast axis, and left-handed circularly polarized light is incident onto the radar
screen.

l/4 Retarder sheet

Polarizer sheet

Figure 6.34 A circularly polarizing sheet, which is a lamination of polarizer and �/4 plate sheets, is
used for prevention of glare on a radar screen.
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Figure 6.35 Step-by-step explanation of the antiglare circularly polarizing sheet. (a) Incident wave.
(b) Reflected wave.

The very right top inset in the Figure shows what happens on reflection. If the
surface is assumed to be a perfect reflector, at the moment when the field vector of the
incident light points in the direction OA, the field vector of the induced field should
point in the opposite direction OA0 to satisfy the boundary condition that the resultant
tangential E field is zero on the surface of a perfect conductor. At the next moment,
when the incident vector moves to OB, the induced vector moves to OB0. Although
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the incident vector and the induced vector always point in opposite directions, they
always rotate in the same direction.

The reflected wave is the expansion of the induced wave. Figure 6.35b shows how
the reflected wave propagates toward the operator. Recall that the observer looks
toward the source of light, and the reflected wave is right-handed circularly polarized.
Likewise, the azimuth angle of the fast axis of the �/4 plate now looks to the observer
like  D 135°.

The light transmitted through the �/4 plate is found by the circle diagram to be
horizontally polarized. The light cannot go through the polarizer, and the light reflected
from the radar surface does not reach the radar operator. The blips originating from
the radar screen, which are randomly polarized, reach the operator’s eye with some
attenuation.

6.6.2 Monitoring the Reflected Light with Minimum Loss

A reflectometer gathers information from reflected light. One of the simplest ways to
sample the reflected light is to use a nonpolarizing beamsplitter (NPBS) in the manner
shown in Fig. 6.36a. With this configuration, however, the reflected as well as the

Source

Lost

Lost

NPBS

Detector

Target

Source

PBS

Detector Target

(b)

(a)

y

x45°

l/4 Plate

Figure 6.36 Comparison between two types of reflectometers. (a) Using a nonpolarizing
beamsplitter. (b) Using a polarizing beamsplitter and a �/4 plate.
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incident beam will be split by the splitter, resulting in light being lost to the system.
If a beamsplitter with reflectance R is used, the intensity of the light collected by the
system is IinTR+, where Iin, T, and + are incident light intensity, the transmittance of
the beamsplitter, and the reflectivity of the target, respectively. Because of the constraint
T C R D 1, the optimum intensity of the collected light occurs when R D 0.5, and the
collected light intensity is at best 0.25 Iin+. Only one-quarter of the incident light
intensity is useful.

The reflected light is often weak, as, for instance, in a system for remotely analyzing
the gas contents from a smokestack. The system shown in Fig. 6.36b can be used
to maximize the sensitivity. This reflectometer uses the combination of a polarizing
beamsplitter (PBS) and a quarter-waveplate.

The arrangement is quite similar to that for preventing the glare explained in
Fig. 6.35, where the vertically polarized incident light is converted into a horizontally
polarized reflected light after passing through the �/4 plate twice. In the reflectometer
of Fig. 6.36b, the vertically polarized light transmits through the PBS and is converted
into a left-handed circularly polarized wave by the �/4 plate whose azimuth is 45°.
The light reflected from the target is a right-handed circularly polarized wave, which
in turn is converted into a horizontally polarized light by the same �/4 plate. The
horizontally polarized wave is reflected by the PBS to the detector.

The power loss due to the transmission loss of the optical components is 10�3 –10�5,
depending on the quality of the components.

6.7 ROTATORS

When a linearly polarized light propagates in quartz along its optic axis, the direction of
polarization rotates as it propagates. Similar phenomena can be observed inside other
crystals like cinnabar (HgS) and sodium chlorate (NaClO3), as well as solutions like
sucrose (C12H22O11), turpentine (C10H16), and cholesteric liquid crystals. Even some
biological substances like amino acids display this effect. This phenomenon of rotation
of the direction of polarization is called optical activity. A substance that displays
optical activity is called an optically active substance. Each optically active substance
has a particular sense of rotation. Media in which the rotation of polarization is right-
handed looking toward the source are called dextrorotary (dextro in Latin means right).
Media in which the rotation of polarization is left-handed are called levorotary (levo
in Latin means left). There are both d- and l-rotary varieties of quartz.

Fresnel explained the mechanism of optical activity by decomposing a linearly
polarized wave into circularly polarized waves. As shown in Fig. 6.37, linearly
polarized incident light can be considered as a combination of right- and left-handed
circularly polarized waves with equal amplitudes. If these two oppositely rotating
circularly polarized waves rotate at the same speed, the direction of the polarization of
the resultant wave remains unchanged. However, if the rotation speeds are different,
the direction of polarization of the resultant wave rotates as the two waves propagate.

In explaining the difference in rotation speeds of the left and right circular
component waves, Fresnel attributed this to the rotational asymmetry of the molecular
structure of the optically active medium.

A birefringent material is a material that is characterized by two indices of refraction.
If, for example, the refractive indices are nx and ny , corresponding to x and y linearly
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Figure 6.37 Fresnel’s explanation of optical activity. (a) Incident light. (b) Inside an optically active
substance.

One may wonder about the validity of Fresnel’s explanation of optical activity for optically
active liquids because of the random orientation of the molecules. As shown in the figure, a
coil spring that looks right-handed is still right-handed even when it is flipped over.

Optically active
solution

Keep the eyes fixed and flip the spring. There is no change in handedness.

polarized component waves, the material is said to be linearly birefringent. Retarders
are examples of linearly birefringent devices. If the refractive indices are nl and nr ,
corresponding to left and right circularly polarized component waves, the material is
said to be circularly birefringent. Optically active substances are examples of circular
birefringence.
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Let us compare the emergent polarization for these two different types of
birefringence. In the case of linear birefringence, the shape and/or orientation of the
emergent polarization may differ from that of the incident light, as illustrated in the
retarder examples shown in Figs. 6.7 and 6.8. On the other hand, for a circularly
birefringent medium, the orientation of the emergent polarization changes, but the
shape remains the same. For example, linearly polarized light incident on an optically
active medium will remain linearly polarized, but the direction will rotate, as illustrated
in Fig. 6.37.

The angle of rotation in an optically active medium is proportional to the distance
of propagation in the medium. The angle of rotation per unit distance is called the
rotary power. The rotary power of quartz, for instance, is 27.71°/mm at the D line of
the sodium spectrum (� D 0.5893 µm) and at 20°C. In the case of a liquid substance
like natural sugar dissolved in water, the angle of rotation is proportional to both the
length of transmission and the concentration of the solute. The saccharimeter detailed
in Section 6.7.1 determines the concentration of an optically active sugar solution by
measuring the angle of rotation.

The rotary power depends on the wavelength of the light as well as the temperature
of the substance. If an optically active medium is placed between the orthogonally
oriented polarizer and analyzer shown in Fig. 6.38, and white light is used as the
incident light, then the optical spectrum is attenuated for wavelengths whose angles of
rotation are an integral multiple of � radians and their complimentary colors appear.
A beautiful color pattern is observed. This phenomenon is called rotary dispersion.

The Faraday effect causes a substance to behave like an optically active medium
when an external magnetic field is applied. This induced optical activity exists only
when an external magnetic field is applied. The sense of rotation is solely determined

y

y ′

x ′45°

x

Polarizer Analyzer

k1

k2

E0 E1 E2 E3

y

x

k2

k1

Figure 6.38 In the polariscope, an optical component is inserted between two crossed polarizers for
inspection. The transmission axis for the polarizer on the left is in the y direction, and the transmission
axis for the polarizer on the right is in the x direction.
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by the direction of the magnetic field and does not depend on the direction of light
propagation. This is an important distinction between ordinary optical activity (a
reciprocal phenomenon) and the Faraday effect (a nonreciprocal phenomenon). In the
case of natural optical activity, if the direction of light propagation is reversed in an
l-rotary material, the rotation is still l-rotary. In the case of the Faraday effect, if a
material is l-rotary when the light propagates in the direction parallel to the magnetic
field, the material is d-rotary when the light propagates antiparallel to the magnetic
field.

Example 6.5 As shown in Fig. 6.38, the polariscope consists of two polarizer sheets
arranged with their transmission axes perpendicular to each other. Find the amplitude
E3 of the emergent light when the following components are inserted between the
polarizers. Assume k1 D 1 and k2 D 0.

(a) No component.
(b) A polarizer sheet with transmission axis along x0 and an azimuth angle of 45°.
(c) A �/4 plate with an azimuth angle of 45° (fast axis along x0 axis in Fig. 6.38).
(d) A �/2 plate with azimuth angle of 45°.
(e) A full-waveplate with azimuth angle of 45°.
(f) A 90° rotator.

Solution
This time, the solutions are found without resorting to circle diagrams.
(a) Nothing is inserted. E3 D 0.
(b) A polarizer is inserted at 45°. As shown in Fig. 6.39a, E1 is decomposed into

Ex0 and Ey0 . Ey0 is extinguished. Only the horizontal component of Ex0 is transmitted
through the analyzer.

E3 D E1 ð 1p
2

ð 1p
2

D E1

2

(c) A �/4 plate is inserted at 45°. There are two ways to solve this problem.

(1) Decompose E1 into components Ex0 parallel to the x0 axis and Ey0 parallel
to the y0 axis. The components are

Ex0 D E1p
2

and Ey0 D E1p
2
ej90°

These two waves are further decomposed into both horizontal and vertical (x
and y) components, but one needs to be concerned only with the x component
because only the horizontal component passes through the analyzer. The
horizontal component of the incident wave to the analyzer is

Ex D 1p
2

E1p
2

� 1p
2

E1p
2
ej90°
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Figure 6.39 Solutions of Example 6.5.

where the second term is from Ey0 as shown in Fig. 6.39a and the first term
is from Ex0 , and

E3 D E1

2

1 � ej90°� D E1p

2
e�j45°

(2) Note that emergent wave E2 is a circularly polarized wave with radius
E1/

p
2. The magnitude of the horizontally polarized wave E3 is E1/

p
2.
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(d) E1 is decomposed into Ex0 and Ey0 . The vector Ey0 is reversed in direction
because of the �/2 retarder, as shown in Fig. 6.39b. The resultant of Ex0 and �Ey0

becomes E3.

E3 D 2
E1p

2
cos 45°

D E1

Another way of obtaining the same result is to make use of the fact that a �/2
plate rotates the polarization by 2�. The vertical polarization becomes the horizontal
polarization.

(e) The full-waveplate does not disturb the state of polarization and the answer is
the same as (a):

E3 D 0

(f) If a vertical vector pointing toward the Cy direction is rotated by 90°, the result
is a horizontal vector pointing toward the �x direction.

E3 D �E1 �

6.7.1 Saccharimeter

As a sugar solution is an optically active substance, the concentration of sugar can be
determined by measuring the angle of rotation of the transmitted light polarization. The
Lausent-type saccharimeter such as shown in Fig. 6.40 is widely used to monitor the
sugar concentration of grapes in a vineyard. This is a pocketable outdoor type and uses
white light. The combination of a wavelength filter F and a polarizing beamsplitter
(PBS) converts the incident white light into quasimonochromatic linearly polarized
light. In the left half of the field, the light passes through a thin quartz rotator R, while
in the right half of the field, the light misses the rotator. Thus, a slight difference in
the direction of polarization is created between the light EL passing through in the left
field and ER in the right field. This slight difference in the direction of polarization is
for the purpose of increasing the accuracy of reading the azimuth of the analyzer A
through which the incident light is viewed.

Filter Polarizer
Rotator Intensity

compensator
but no
"rotator"

Test sample Protractor
for analyzer

Analyzer
Telescope

PBS

A

L2

L1

PBSF R C C12H22O11

P

Figure 6.40 Lausent-type saccharimeter.
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The first step is the calibration without solution. When the direction k2 of the
extinction axis is adjusted at exactly the midpoint of the angle between the two
directions of polarization, the contrast in the intensities between the left and right fields
diminishes. The azimuth angle �1 of the analyzer of diminishing contrast is noted.

Next, the solution under test is poured into the chamber. The directions of
polarization in both left and right fields will rotate by an amount that is proportional
to the concentration of the sugar.

The analyzer is again rotated so that the direction k2 of the extinction axis lies at
the midpoint of the rotated directions of polarizations, and the contrast between the
left and right field diminishes. This new azimuth angle �2 of the analyzer is noted.

The difference � D �2 � �1 of the azimuth angles of the analyzer is the angle of
rotation caused by the optical activity of the sugar solution.

The explanation of the operation of the saccharimeter will be repeated referring to
Fig. 6.41. As shown in Fig. 6.41a, when the analyzer is not exactly adjusted such that
k2 is at the midpoint of EL and ER, a contrast between the left and right field intensities
can be seen (the right side is darker). As soon as k2 of the analyzer is adjusted to the
midpoint, as shown in Fig. 6.41b, the contrast disappears. The azimuth angle �1 is
noted. In the field, this calibration is performed prior to introducing the sample, as the
power of rotation of the quartz rotator R is temperature dependent.

As the second step, the test sample is introduced into the chamber. Both EL and
ER rotate by the same amount due to the optical activity of the sample, as shown in
Fig. 6.41c, and a contrast in field intensities appears again (the left side is darker).
The analyzer is rotated to find the azimuth �2 that diminishes the contrast, as shown
in Fig. 6.41d. The rotation is computed as � D �2 � �1.

The concentration P of sugar in grams per 100 cc of solution is given by the formula

� D [�]t�l
P

100

where [�]t� is the specific rotary power of the substance at a temperature t°C and
a light wavelength � µm. For sugar, [�]20

0.5893 µm D 66.5° (per length in decimeter ð
concentration in grams per 100 cc). The quantity l is the length of the chamber in
units of 10 cm.

The high-accuracy performance of this type of saccharimeter is attributed to the
following:

1. The contrast of two adjacent fields rather than the absolute value of the
transmitted light through the analyzer was used. The eyes are quite sensitive
to detecting differences in intensities between adjacent fields.

2. The region of minimum rather than maximum light transmission through the
analyzer was used. The sensitivity of the eyes to detecting a change in the
transmitted light is greater near the minimum of transmission.

Another approach is to eliminate both the quartz rotator and the intensity
compensator. The incident light to the sample is not divided. The direction of the
polarization of the emergent light is directly measured by a split-field polarizer. The
split-field polarizer is made up of two analyzers side by side with a 5° to 10° angle
between the extinction axes, as shown in Fig. 6.41e. When the split-field analyzer is
rotated so that the d0 –d0 axis aligns with the direction of polarization of the light, the
contrast between the left and right sections disappears. The split-field polarizer again
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Figure 6.41 Field view of Lausent-type saccharimeter. (a) Without sample and unadjusted.
(b) Without sample and adjusted to eliminate contrast. (c) With sample and unadjusted. (d) With
sample and adjusted to eliminate contrast. (e) Split-field polarizer.

uses the contrast of the fields near the minimum of transmission and the precision
reaches 0.001°.

6.7.2 Antiglare TV Camera

It is often difficult for a TV reporter to videotape a passenger inside a car due to the
light reflected from the surface of the car window.

The geometry of an antiglare camera [12] is shown in Fig. 6.42. When the incident
angle to the car window is in the vicinity of Brewster’s angle (56° for glass), reflection
of the p-polarized light is suppressed, but the s-polarized light is not, and thus the light
reflected from the car window is strongly linearly polarized. Removal of this particular
component of the light minimizes glare to the TV camera. One way of accomplishing
this is by means of a liquid crystal rotator such as the one shown in the display pannel
in Fig. 5.33, but without the input polarizer P1.
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Figure 6.42 Operation of an antiglare TV camera.

(a) off (b) on

(c) off (d) on

Figure 6.43 Demonstration of antiglare TV camera. (Courtesy of H. Fujikake et al. [12].)
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The total amount of light into the camera is monitored and used as an electrical
servosignal. The amount of light for the same scene should be at a minimum when
the glare light has successfully been removed. The electrical servosignal rotates the
polarization direction of the incident glare light until it becomes blocked by polarizer
sheet P2. The servosignal is minimized when the required amount of polarization
rotation is achieved. In order to construct a variable rotator, TN liquid crystal rotators
of 45° and 90° are combined. By selecting the appropriate combination of the applied
electric field to the two TN liquid crystal rotators, the amount of rotation can discretely
be varied from 45° to 135° at intervals of 45°. The photographs in Fig. 6.43 demonstrate
the effectiveness of the antiglare TV camera. The photographs on the left were taken
with an ordinary camera, while those on the right are the same scenes taken with the
antiglare camera. With the antiglare camera, the passengers in the car, and the fish in
the pond, are clearly visible.

6.8 THE JONES VECTOR AND THE JONES MATRIX

A method of analysis based on 2 ð 2 matrices was introduced by R. Clark Jones [13,14]
of Polaroid Corporation to describe the operation of optical systems. Each component
of the system has an associated Jones matrix, and the analysis of the system as a whole
is performed by multiplication of the 2 ð 2 component matrices. Moreover, the state
of polarization at each stage of the multiplication is easily known.

The state of polarization is described by the Jones vector whose vector components
are Ex and Ey . From Eqs. (6.1) and (6.2), the Jones vector is[

Ex

Ey

]
D ej
ˇz�ωt�

[
A

Bej

]

6.32�

The common factor is generally of no importance and is omitted. Eliminating the
common factor ej
ˇz�ωt�, Eq. (6.32) is written as

E D
[

A
Bej

]

6.33�

Representative states of polarizations expressed by the Jones vector are shown in
Fig. 6.44.

If only the relative phase between Ex and Ey is important, the common factor ej/2

can be removed, and Eq. (6.33) becomes

E D
[
Ae�j/2

Bej/2

]

6.34�

If one interprets an optical component as a converter of the state of polarization from
[Ex Ey] into [E0

x E0
y], then the function of the optical component is represented by

the 2 ð 2 matrix that transforms [Ex Ey] into [E0
x E0

y].

[
E0

x
E0

y

]
D [2 ð 2]

[
Ex

Ey

]

6.35�

Such a 2 ð 2 matrix is called the Jones matrix.
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Figure 6.44 Jones vector and the state of polarization.

6.8.1 The Jones Matrix of a Polarizer

The Jones matrix of a polarizer whose major principal transmission axis is along the
x axis is

P D
[
k1 0
0 k2

]

6.36�

For an ideal polarizer, k1 D 1 and k2 D 0.
Next, the case when the polarizer is rotated in its plane will be considered. Let the

direction of the transmission axis be rotated by  from the x axis. The incident field
E is expressed in x–y coordinates.

In this case, the incident field E has to be decomposed into Ex1, which is along the
major principal axis of the polarizer, and Ey1, which is along the minor principal axis.
Referring Fig. 6.45,

Ex1 D E cos
� � �

D E cos � cos � E sin � sin

D Ex cos � Ey sin

Similarly,

Ey1 D �Ex sin C Ey cos

Ex1 and Ey1 can be rewritten in a matrix form as

[
Ex1

Ey1

]
D

[
cos sin

� sin cos

] [
Ex

Ey

]

6.37�

The matrix in Eq. (6.37) is a rotation by  degrees from the original coordinates; the
incident field E is expressed in coordinates x1 and y1 that match the directions of the
principal axes of the polarizer.
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Figure 6.45 Finding the Jones matrix for a polarizer rotated by .

The light emergent from the polarizer is now

[
E0

x1
E0

y1

]
D

[
k1 0
0 k2

] [
Ex1

Ey1

]

6.38�

The emergent wave, however, is in x1 and y1 coordinates, and needs to be expressed
in the original x and y coordinates.

Referring Fig. 6.45, the sum of the projections of E0
x1 and E0

y1 to the x axis provides
E0

x. A similar projection to the y axis provides E0
y .

E0
x D E0

x1 cos � E0
y1 sin

E0
y D E0

x1 sin C E0
y1 cos

which again can be rewritten in a matrix form as

[
E0

x
E0

y

]
D

[
cos � sin
sin cos

] [
E0

x1
E0

y1

]

6.39�

This is a rotation by � degrees from the x1 and y1 coordinates. The emergent wave
is expressed in the original x and y coordinates.
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Combining Eqs. (6.37) to (6.39), the Jones matrix P for a polarizer rotated by 
is given by

[
E0

x
E0

y

]
D P

[
Ex

Ey

]

6.40�

P D
[

cos � sin
sin cos

] [
k1 0
0 k2

] [
cos sin

� sin cos

]

6.41�

P D
[
k1 cos2  C k2 sin2  
k1 � k2� sin cos

k1 � k2� sin cos k1 sin2  C k2 cos2 

]

If the polarizer is ideal and k1 D 1 and k2 D 0, Eq. (6.41) becomes

P D
[

cos2  sin cos
sin cos sin2 

]

6.42�

6.8.2 The Jones Matrix of a Retarder

The Jones matrix of a retarder whose fast axis is oriented along the x axis is

R D
[

1 0
0 ej

]

6.43�

R D
[
e�j/2 0

0 ej/2

]

6.44�

The Jones matrix of the half-waveplate is

H D
[�j 0

0 j

]

6.45�

and that of the quarter-waveplate is

Q D
[
e�j�/4 0

0 ej�/4

]

6.46�

When a retarder is rotated, the treatment is similar to that of the rotated polarizer.
The Jones matrix whose fast axis is rotated by  from the x axis is

R D
[

cos � sin
sin cos

] [
e�j/2 0

0 ej/2

] [
cos sin

� sin cos

]

6.47�

Noting that Eq. (6.47) becomes the same as Eq. (6.40) if k1 and k2 are replaced by
e�j/2 and ej/2, respectively, the product of the matrix Eq. (6.47) is obtained as

R D

 e�j/2 cos2  C ej/2 sin2  �j2 sin



2
sin cos

�j2 sin


2
sin cos e�j/2 sin2  C ej/2 cos2 


 
6.48�
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The Jones matrix of a retarder with retardance  rotated by š45° is, from Eq. (6.48),

Rš45° D

 cos



2
Ýj sin



2

Ýj sin


2
cos



2


 
6.49�

When a half-waveplate is rotated by  D š45°, the Jones matrix is

Hš45° D
[

0 1
1 0

]

6.50�

where a common factor of eÝj�/2 which appears after inserting /2 D �/2 and
 D š45° into Eq. (6.48), is suppressed.

When a quarter-waveplate is rotated by  D š45°, the Jones matrix is

Qš45° D 1p
2

[
1 Ýj

Ýj 1

]

6.51�

6.8.3 The Jones Matrix of a Rotator

A rotator changes the azimuth angle without disturbing all other parameters of the state
of polarization.

Let the incident linearly polarized field E be converted into E0 by rotation as shown
in Fig. 6.46. Noting that jE0j D jEj,

E0
x D E cos
�0 C �� D E cos �0 cos � � E sin �0 sin �

E0
y D E sin
�0 C �� D E cos �0 sin � C E sin �0 cos � 
6.52�

Since

Ex D E cos �0

Ey D E sin �0

Eq. (6.52) is equivalent to

[
E0

x
E0

y

]
D

[
cos � � sin �
sin � cos �

] [
Ex

Ey

]

6.53�

which is the same expression as that for rotating the coordinates by ��.
While the above explanation dealt with the rotation of a linearly polarized incident

light, the same holds true for elliptically polarized incident light. For elliptical
polarization, each decomposed wave rotates by the same amount and the elliptical
shape does not change, but the azimuth of the axes rotates by �.

Regardless of the orientation of a light wave incident onto a rotator, the amount of
rotation is the same.

Example 6.6 Find the answers to Example 6.5 using the Jones matrix.
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Figure 6.46 Rotation of a field vector by a rotator.

Solution
(a) No plate is inserted. From Eq. (6.42) with  D 90° and then 0°, the Jones matrix

expression is

[
E0

x
E0

y

]
D

[
1 0
0 0

] [
0 0
0 1

] [
Ex

Ey

]

D
[

0 0
0 0

] [
Ex

Ey

]

There is no output.
(b) A polarizer is inserted at  D 45°. The Jones matrix expression from Eq. (6.42)

is [
E0

x
E0

y

]
D 1

2

[
1 0
0 0

] [
1 1
1 1

] [
0 0
0 1

] [
Ex

Ey

]

D 1

2

[
1 0
0 0

] [
Ey

Ey

]

In the above expression, the vector just after the inserted polarizer is linearly polarized
at 45°. The advantage of the Jones matrix is that the state of polarization can be known
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at each stage of manipulation. Performing the final matrix multiplication gives

[
E0

x
E0

y

]
D 1

2

[
Ey

0

]

which is a linearly polarized wave along the x direction.
(c) A quarter-waveplate is inserted at  D 45°. From Eqs. (6.42) and (6.51), the

Jones matrix expression is

[
E0

x
E0

y

]
D 1p

2

[
1 0
0 0

] [
1 �j

�j 1

] [
0 0
0 1

] [
Ex

Ey

]

D e�j�/2

p
2

[
1 0
0 0

] [
Ey

Eyej�/2

]

The intermediate state of polarization after passing through the polarizer and quarter-
waveplate is left-handed circular polarization from Fig. 6.44. The emergent wave is

[
E0

x
E0

y

]
D e�j�/2

p
2

[
Ey

0

]

(d) A half-waveplate is inserted at  D 45°. From Eqs. (6.42) and (6.50), the Jones
matrix expression is

[
E0

x
E0

y

]
D

[
1 0
0 0

] [
0 1
1 0

] [
0 0
0 1

] [
Ex

Ey

]

D
[

1 0
0 0

] [
Ey

0

]

The light leaving the half-wave plate is linearly polarized along the x direction. The
emergent wave is [

E0
x

E0
y

]
D

[
Ey

0

]

(e) A full-waveplate is inserted with azimuth 45°. From Eqs. (6.42) and (6.49) with
 D 2�, the Jones matrix expression is

[
E0

x
E0

y

]
D �

[
1 0
0 0

] [
1 0
0 1

] [
0 0
0 1

] [
Ex

Ey

]

D �
[

1 0
0 0

] [
0
Ey

]

D
[

0
0

]
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(f) A 90° rotator is inserted. From Eqs. (6.42) and (6.53), the Jones matrix expression
is [

E0
x

E0
y

]
D

[
1 0
0 0

] [
0 �1
1 0

] [
0 0
0 1

] [
Ex

Ey

]

D
[

1 0
0 0

] [�Ey

0

]

D
[�Ey

0

]
�

Example 6.7 Apply Jones matrices to Senarmont’s method for measuring the
retardance  of a crystal plate.

Solution As shown in Fig. 6.21, a linearly polarized wave inclined at 45° is incident
onto the crystal under test. The light emergent from the crystal further goes through a
quarter-waveplate at �45°, where the wave is converted into a linearly polarized wave
whose azimuth angle determines the retardance of the sample under test.

The output field E is from Eqs. (6.44) and (6.51)[
Ex

Ey

]
D 1p

2

[
1 j
j 1

] [
e�j/2 0

0 ej/2

] [
1
1

]

D
p

2ej45°


 cos

(


2
C 45°

)

sin
(


2
C 45°

)



The emergent wave from the quarter-waveplate is linearly polarized with azimuth
angle /2 C 45°. �

6.8.4 Eigenvectors of an Optical System

With most optical systems, if the state of polarization of the incident wave is varied,
the state of polarization of the emergent wave also varies. However, one may find a
particular state of polarization that does not differ between the incident and emergent
waves, except for a proportionality constant. The field vector that represents such an
incident wave is called an eigenvector and the value of the proportionality constant
is called an eigenvalue of the given optical system. For instance, a lasing light beam
(see Section 14.2.3) bouncing back and forth inside the laser cavity has to be in the
same state of polarization after each trip, over and above the matching of the phase,
so that the field is built up as the beam goes back and forth. When the laser system is
expressed in terms of the Jones matrix, the eigenvector of such a matrix provides the
lasing condition and the eigenvalue, the gain or loss of the system. [15]

Let
[
Ex

Ey

]
be an eigenvector of the optical system, and let � be its eigenvalue. The

relationship between incident and emergent waves in Jones matrix representation is

�

[
Ex

Ey

]
D

[
a11 a12

a21 a22

] [
Ex

Ey

]

6.54�
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Equation (6.54) is rewritten as

[
a11 � � a12

a21 a22 � �

] [
Ex

Ey

]
D 0 
6.55�

The eigenvalues and corresponding eigenvectors of the system will be found by
solving Eq. (6.55).

For nontrivial solutions for Ex and Ey to exist, the determinant of Eq. (6.55) has to
vanish:


a11 � ��
a22 � �� � a12a21 D 0 
6.56�

Equation (6.56) is a quadratic equation in eigenvalue � and the solution is

�1 D 1
2

[
a22 C a11 �

√

a22 � a11�2 C 4a2

12

]

�2 D 1
2

[
a22 C a11 C

√

a22 � a11�2 C 4a2

12

] 
6.57�

The convention of choosing �1 < �2 will become clear as the analysis progresses (see
the discussion surrounding Eq. (6.86)).

Next, the eigenvectors will be found. Inserting �1 into either the top or bottom row
of Eq. (6.55) gives

Ey D a11 � �1

�a12
Ex 
6.58�

or

Ey D �a21

a22 � �1
Ex 
6.59�

The equality of Eqs. (6.58) and (6.59) is verified from Eq. (6.56). One has to be
careful whenever a12 D 0 or a22 � �1 D 0, as explained in Example 6.6.

Eigenvector v1, whose components Ex and Ey are related by either Eq. (6.58) or
(6.59), is rewritten as

v1 D
[
Ex1

Ey1

]
D

[ �a12

a11 � �1

]

6.60�

and similarly for �2

v2 D
[
Ex2

Ey2

]
D

[ �a12

a11 � �2

]

6.61�

By taking the inner product of the eigenvectors given by Eqs. (6.60) and (6.61), we
will find the condition that makes the eigenvectors orthogonal. Simplification of the
product using Eq. (6.57) leads to

[Ex1 Ey1]
[
Ex2

Ey2

]
D a12
a12 � a21� 
6.62�
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Thus, these vectors are orthogonal if

a12 D a21 
6.63�

meaning Eq. (6.54) is a symmetric matrix.

Example 6.8 Find the eigenvalues and eigenvectors of a quarter-waveplate with its
fast axis along the x axis.

Solution The Jones matrix expression of a quarter-waveplate is, from Eq. (6.46),

�

[
Ex

Ey

]
D

[
e�j�/4 0

0 ej�/4

] [
Ex

Ey

]

6.64�

Comparing Eq. (6.64) with (6.54) gives

a11 D e�j�/4

a22 D ej�/4

a12 D a21 D 0


6.65�

Inserting Eq. (6.65) into (6.57) gives

�1,2 D 1p
2

1 Ý j� D eÝj�/4 
6.66�

As mentioned earlier, if a12 or a22 � �1 is zero, one has to be careful. Here, the
original equation Eq. (6.55) is used,


a11 � ��Ex C a12Ey D 0

a21Ex C 
a22 � ��Ey D 0

6.67�

and is combined with Eqs. (6.65) and (6.66) with � D �1 to give

0Ex C 0Ey D 0

0Ex C
(

2j sin
�

4

)
Ey D 0

The above two equations are simultaneously satisfied if Ey D 0 and Ex is an arbitrary
number, meaning a horizontally polarized wave. The output is �1Ex.

Similarly, with � D �2, Eq. (6.55) becomes(
�2j sin

�

4

)
Ex C 0Ey D 0

Ex C 0Ey D 0

which leads to Ex D 0 and Ey can be any number. The eigenvector is a vertically
polarized wave. The output is �2Ey .

The magnitude of the transmitted light is j�1,2j D 1. If the phase of the output
is important, the phase factor (ej/2) that was discarded from Eq. (6.34) should be
retained in Eq. (6.64). �
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6.9 STATES OF POLARIZATION AND THEIR COMPONENT WAVES

Relationships existing among ellipticity, azimuth of the major axes of the ellipse, Ex

and Ey component waves, and retardance will be derived. Such relationships will help
to convert the expression for an elliptically polarized wave into that of Ex and Ey

component waves.

6.9.1 Major and Minor Axes of an Elliptically Polarized Wave

The lengths of the major and minor axes will be found from the expressions for the
Ex and Ey component waves.

Letting �0 D �ωt C ˇz, Eqs. (6.3) and (6.4) can be rewritten for convenience as

Ex

A
D cos�0 
6.68�

Ey

B
D cos�0 cos � sin�0 sin 
6.69�

In order to find an expression that is invariant of time and location, �0 is eliminated
by putting Eq. (6.68) into (6.69):

Ey

B
D

(
Ex

A

)
cos �

√
1 �

(
Ex

A

)2

sin 
6.70�

Rearranged, Eq. (6.70) is

(
Ex

A

)2

C
(
Ey

B

)2

� 2
Ex

A

Ey

B
cos D sin2  
6.71�

In order to facilitate the manipulation, let’s rewrite Eq. (6.71) as

g
X, Y� D sin2  
6.72�

g
X, Y� D a11X
2 C a22Y

2 C 2a12XY 
6.73�

where

X D Ex, Y D Ey

a11 D 1

A2
, a22 D 1

B2
, a12 D �cos

AB


6.74�

Let us express Eq. (6.73) in matrix form so that various rules [16] associated with
the matrix operation can be utilized. As shown in Fig. 6.47, let the position vector v
of a point 
X, Y� on the ellipse be represented by

v D
[
X
Y

]
vt D [X Y] 
6.75�



432 POLARIZATION OF LIGHT

M v
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v̂ 2

v2

y

x

v

Figure 6.47 The normal to the ellipse is Mv, and the directions of the major and minor axes are those
v that satisfy Mv D �v. X D Ex and Y D Ey .

and define a symmetric matrix M as

M D
[
a11 a12

a12 a22

]

6.76�

Realize that an equality exists as

vtMv D a11X
2 C a22Y

2 C 2a12XY 
6.77�

The normal vN from the circumference of the ellipse is obtained by taking the
gradient of Eq. (6.73) (see Eq. (4.89)) and is expressed in vector form as

vN D 2
[
a11X C a12Y
a12X C a22Y

]

6.78�

Hence,

vN D 2Mv 
6.79�

As shown in Fig. 6.47, if the vector v were to represent the direction of the major
or minor axis of the ellipse, vN should be parallel to v or vN D �v, and hence, the
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condition for v to be along the major or minor axis is, from Eq. (6.79),

Mv D �v 
6.80�

where the factor 2 was absorbed in �. Thus, the eigenvectors of matrix M provides the
directions of the major and minor axes, and the eigenvectors are given by Eqs. (6.60)
and (6.61).

Next, the actual lengths a and b of the major and minor axes of the ellipse will be
found. The position vector v in Fig. 6.47 of a point (X,Y) on the ellipse in the X–Y
coordinates is expressed in the new x–y coordinates taken along the major and minor
axes as

v D x Ov1 C y Ov2 
6.81�

where Ov1 and Ov2 are the unit vectors of v1 and v2.
Inserting Eq. (6.82) into (6.77) gives

vtMv D 
x Ovt
1 C y Ovt

2�M
x Ov1 C y Ov2�

D �1x
2 C �2y

2 
6.82�

where use was made of

MOv1 D �1 Ov1 
6.83�

MOv2 D �1 Ov2 
6.84�

Ovt
1·Ov2 D 0

Combining Eqs. (6.72), (6.73), (6.77) and (6.83) gives

x2


sin �2/�1
C y2


sin�2/�2
D 1 
6.85�

Thus, in the new x–y coordinates along v1 and v2, the major and minor axes of the
ellipse a and b are

a D j sinjp
�1

and b D j sinjp
�2


6.86�

Since a is conventionally taken as the length of the major axis, the smaller eigenvalue
is taken for �1. That is, the negative sign of Eq. (6.57) will be taken for �1, and the
positive sign for �2.

In summary, the eigenvalues and eigenvectors of M have given the lengths as well
as the directions of the major and minor axes.

Before going any further, we will verify that Eq. (6.71) is indeed the expression
of an ellipse, and not that of a hyperbola, as both formulas are quite alike. Note
that if �1�2 > 0, then Eq. (6.85) is an ellipse, but if �1�2 < 0, it is hyperbola. From
Eq. (6.57), the product �1�2 is

�1�2 D a11a22 � a2
12 
6.87�
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Note that Eq. (6.87) is exactly the determinant of M. Thus, the conclusions are

det M > 0, ellipse

det M < 0, hyperbola

6.88�

The value of the determinant is, from Eqs. (6.74) and (6.76),

�1�2 D det




1

A2
�cos

AB

�cos

AB

1

B2


 D sin2 

A2B2

6.89�

Thus,

�1�2 > 0 
6.90�

and Eq. (6.71) is indeed the expression of an ellipse.

6.9.2 Azimuth of the Principal Axes of an Elliptically Polarized Wave

Figure 6.48 shows the general geometry of an ellipse. Capital letters will be used for the
quantities associated with the X and Y components of the E field, and lowercase letters

b

a
q

Y

X

x

0

y

2A

2a

v2
v1

2b
2B

Figure 6.48 Parameter associated with an ellipse.
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for those quantities expressed in x–y coordinates. The x–y coordinates correspond to
the directions of the major and minor axes of the ellipse. EX does not exceed A and
EY does not exceed B, and the ellipse is always bordered by a rectangle 2A ð 2B. The
ratio B/A is often expressed in terms of the angle ˛ as

tan˛ D B

A

6.91�

Since the right-hand side of Eq. (6.91) is a positive quantity, ˛ must lie in the range

0 � ˛ � �/2 
6.92�

The vector v1 points in the direction of the x axis. The azimuth angle � of the major
axis with respect to the X axis will be found.

From Eq. (6.60), tan � is expressed as

tan � D � 
a11 � �1�

a12

6.93�

Inserting Eqs. (6.57) and (6.74) into Eq. (6.93) gives

tan � D 
�t C
√

t2 C cos2 �
1

cos

6.94�

where

t D A2 � B2

2AB

6.95�

Equations (6.94) and (6.95) will be simplified further. Using the double-angle
relationship of the tangent function given by

tan 2� D 2 tan �

1 � tan2 �

6.96�

Eq. (6.94) is greatly simplified as

tan 2� D cos

t

6.97�

Applying the double-angle relationship of Eq. (6.96) to the angle ˛, and making use
of Eq. (6.91), Eq. (6.95) becomes

t D 1

tan 2˛

6.98�

The final result is obtained from Eqs. (6.97) and (6.98):

tan 2� D tan 2˛ cos 
6.99�
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As seen from Fig. 6.48, all configurations of the principal axes can be expressed by
0 � � � 180°.

The following conclusions are immediately drawn from Eq. (6.99):

1. If the amplitudes A and B are identical and ˛ D 45°, then the azimuth � can only
be 45° or 135°, regardless of the value of :

� D 45° for cos > 0

� D 135° for cos < 0

This agrees with previous discussions involving Fig. 6.4.
2. For any value of A and B, if  D 90°, the azimuth � is either 0° or 90°.

6.9.3 Ellipticity of an Elliptically Polarized Wave

Ellipticity is another quantity that describes the shape of an ellipse. The ellipticity  is
defined as

 D b

a

6.100�

where a is the length of the major axis, and b is the length of the minor axis of the
ellipse.

From Eqs. (6.57), (6.86), and (6.100) the ellipticity is

 D
√

1 � Y

1 C Y

6.101�

where

Y D
√(

a11 � a22

a11 C a22

)2

C
(

2a12

a11 C a22

)2


6.102�

From Eq. (6.74), the quantities under the square root of Eq. (6.102) are simplified as

a11 � a22

a11 C a22
D � cos 2˛

2a12

a11 C a22
D � sin 2˛ cos


6.103�

where the trigonometric relationships

cos 2˛ D 1 � tan2 ˛

1 C tan2 ˛

6.104�

sin 2˛ D 2 tan˛

1 C tan2 ˛

6.105�

were used.
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Insertion of Eq. (6.103) into (6.102) gives

Y D
√

1 � sin2 2˛ sin2  
6.106�

Thus, insertion of Eq. (6.106) into (6.101) gives the ellipticity. A few more manipu-
lations will be made on the expression for  , but first, observe the following behavior
of  for given values of B/A and :

1. With zero retardance , the value  is always zero and the wave is linearly
polarized.

2. Only when B/A D 1 and  D 90°, can the wave be circularly polarized.

Returning to the manipulations on the ellipticity expression,  will be rewritten
further in terms of trigonometric functions. Referring to Fig. 6.48,  can be represented
by the angle ˇ:

tan ˇ D  
6.107�

Since  is a quantity between 0 and 1

0 � ˇ � �/4 
6.108�

The trigonometric relationship

sin 2ˇ D 2 tanˇ

1 C tan2 ˇ

6.109�

is applied to Eqs. (6.101) and (6.107) to obtain

sin 2ˇ D
√

1 � Y2 
6.110�

Insertion of Eq. (6.106) into (6.110) gives

sin 2ˇ D
√

sin2 2˛ sin2  
6.111�

sin 2ˇ D sin 2˛j sinj 
6.112�

Because of the restrictions imposed on ˛ and ˇ in Eqs. (6.92) and (6.108), both
sin 2ˇ and sin 2˛ are positive and the absolute value of sin has to be taken.

6.9.4 Conservation of Energy

When the state of polarization is converted, the light power neither increases nor
decreases, aside from the loss due to nonideal optical components. Conservation of
energy dictates that

a2 C b2 D A2 C B2 
6.113�
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Equation (6.113) will now be verified. From Eq. (6.86), a2 C b2 is expressed in terms
of the eigenvalues �1 and �2 and  as

a2 C b2 D
(

1

�1
C 1

�2

)
sin2  
6.114�

From Eqs. (6.57) and (6.74), the sum of the eigenvalues is

�1 C �2 D 1

A2
C 1

B2

6.115�

Insertion of Eqs. (6.89) and (6.115) into Eq. (6.114) finally proves the equality of
Eq. (6.113).

Next, area relationships will be derived from Eq. (6.86). The product ab is

ab D sin2 p
�1�2


6.116�

With Eq. (6.89), a substitution for
p
�1�2 is found and

ab D ABj sinj 
6.117�

where the absolute value sign was used because all other quantities are positive. Note
area �ab of the ellipse becomes zero when  D 0, and a maximum when  D š�/2,
for given values of A and B.

Furthermore, the difference a2 � b2 will be calculated. From Eq. (6.86), a2 � b2 is

a2 � b2 D
(

1

�1
� 1

�2

)
sin2  
6.118�

With Eq. (6.89), Eq. (6.118) becomes

a2 � b2 D 
�2 � �1�A
2B2 
6.119�

In the following, �2 � �1 will be calculated. From Eq. (6.57), the difference �2 � �1 is

�2 � �1 D 
a22 � a11�

√
1 C

(
2a12

a22 � a11

)2


6.120�

Manipulation of Eqs. (6.74), (6.95), (6.98), and (6.99) gives

2a12

a22 � a11
D tan 2� 
6.121�

From Eq. (6.120) and (6.121), the difference becomes

�2 � �1 D A2 � B2

A2B2

1

cos 2�

6.122�
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Inserting Eq. (6.122) back into (6.119) gives the final result of


a2 � b2� cos 2� D A2 � B2 
6.123�

This relationship is used later on in converting between X–Y and x–y components.

6.9.5 Relating the Parameters of an Elliptically Polarized Wave to Those of
Component Waves

So far, parameters such as  
D tanˇ� and � have been derived from B/A
D tan˛� and
. In this section, ˛ and  will conversely be obtained from ˇ and �.

Using the trigonometric identity of Eq. (6.104) for ˇ instead of ˛ and using
Eqs. (6.107), (6.113), and (6.123), cos 2ˇ is expressed as

cos 2ˇ D A2 � B2

A2 C B2
Ð 1

cos 2�

6.124�

Dividing both numerator and denominator by A2, and using the trigonometric
relationship Eq. (6.104) for tan˛, Eq. (6.124) becomes

cos 2˛ D cos 2� cos 2ˇ 
6.125�

Next, the expression for the retardance  will be derived. The derivation makes use
of Eq. (6.112), which contains j sinj, and the absolute value cannot be ignored.

j sinj D sin for sin > 0; left-handed

j sinj D � sin for sin < 0; right-handed

6.126�

where the handedness information is given by Eq. (6.15). The ratio between Eqs. (6.99)
and (6.112), and the use of Eqs. (6.125) and (6.126) leads to

tan D šcosec 2� tan 2ˇ 
6.127�

The plus and minus signs are for left-handed and right-handed elliptical polarization,
respectively.

6.9.6 Summary of Essential Formulas

The formulas derived in the last few sections are often used for calculating the state
of polarization and will be summarized here.

 D �y � �x

 > 0, y component is lagging 
6.7� and 
6.8�

 < 0, y component is leading

tan˛ D B

A

(
0 � ˛ � �

2

)

6.91�



440 POLARIZATION OF LIGHT

tan ˇ D b

a
D  

(
0 � ˇ � �

4

)

6.100� and 
6.107�

tan � D
(

�t C
√

t2 C cos2 
)
/ cos 
0 � � < �� 
6.94�

t D A2 � B2

2AB

6.95�

t D 1/ tan 2˛ 
6.98�

tan 2� D tan 2˛ cos 
0 � 2� < 2�� 
6.99�

sin 2ˇ D sin 2˛j sinj 
6.112�

a2 C b2 D A2 C B2 
6.113�

ab D ABj sinj 
6.117�


a2 � b2� cos 2� D A2 � B2 
6.123�


a2 � b2� sin 2� D 2AB cos 
Prob. 6.12a�


a2 � b2� cos 2� D 
A2 C B2� cos 2˛ 
Prob. 6.12b�

cos 2˛ D cos 2� cos 2ˇ 
6.125�

sin > 0 and j sinj D sin; left-handed

sin < 0 and j sinj D � sin; right-handed 
6.126�

tan D šcosec 2� tan 2ˇ 
C is for left-handed and � for right-handed� 
6.127�

Example 6.9 A linearly polarized wave is incident onto a retarder whose fast axis
is along the x axis. The retardance  is 38° and the amplitudes of the Ex and Ey

components are 2.0 V/m and 3.1 V/m, respectively. Calculate the azimuth � and the
ellipticity  of the emergent elliptically polarized wave. Also, determine the lengths a
and b of the major and minor axes. Find the solution graphically as well as analytically.

Solution
For the given parameters,

A D 2.0 V/m

B D 3.1 V/m

 D 38°

� and  will be found.

tan˛ D B

A
D 1.55

˛ D 57.2°

From Eq. (6.99), the angle � is obtained:

tan 2� D tan 2˛ cos

D 
�2.2�
0.788�



STATES OF POLARIZATION AND THEIR COMPONENT WAVES 441

D �1.733

� D �30° or 60°

Since 0 � � � �, � D 60° is the answer.
From Eq. (6.112)

sin 2ˇ D sin 2˛j sinj
D 
0.910�
0.616�

D 0.560

ˇ D 17.0°

 D tanˇ D 0.31

Next, a and b are calculated from Eqs. (6.113) and (6.123):

a2 C b2 D A2 C B2 D 13.61

a2 � b2 D 1

cos 2�

A2 � B2� D 5.61

0.5
D 11.22

a D 3.52

b D 1.09

The circle diagram is shown in Fig. 6.49a and the calculated results are summarized
in Fig. 6.49b. �

Example 6.10
The parameters of an elliptically polarized wave are A D 10 V/m, B D 8 V/m,

a D 12.40 V/m, and b D 3.22 V/m.

(a) Find the azimuth � and the retardance .
(b) For the given values of A and B, what is the maximum ellipticity  that can be

obtained by manipulating the retardance?
(c) For the given values of A and B, is it possible to obtain an ellipse with  D 0.26

and azimuth � D 50° by manipulating the retardance ?

Solution From A and B, tan ˛ is obtained:

A D 10 V/m

B D 8 V/m

tan˛ D 0.8

From a and b, tanˇ is obtained:

a D 12.4 V/m

b D 3.20 V/m

tanˇ D 0.26
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(a)

3.1

2.
0

20x

y

44

4

1
2

2

1 1

33

3

C1

C2

38°

(b)

3.1

2.00 x

y

1.09

q = 60°

a = 57°

3.
52

Figure 6.49 Solutions of Example 6.9 obtained graphically as well as analytically. (a) Graphical
solution. (b) Summary of calculated results.
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(a) � and  are computed as follows. From Eq. (6.123), � is calculated:


a2 � b2� cos 2� D A2 � B2

cos 2� D 36

143.52
D 0.25

� D 37.8°

From Eq. (6.117),  can be found:

ab D ABj sinj

j sinj D ab

AB
D 0.496

 D š29.7°

(b) From Eq. (6.112), the value of  that maximizes 2ˇ for a given value of ˛ is
 D 90°. The maximum value of  is

 D tan ˇ D tan˛ D 0.8

(c) Let us see if Eq. (6.125) is satisfied:

cos 2˛ D cos 2� cos 2ˇ

with tan ˛ D 0.8,

˛ D 38.7°

and with tan ˇ D 0.26

ˇ D 14.6°

� D 50°

0.218 D �1.74 ð 0.873

0.218 6D �1.52

For given A and B, the value of  and � are mutually related, and one cannot arbitrarily
pick the two values. �

Example 6.11 A right-handed elliptically polarized wave with a D p
3 V/m and

b D 1 V/m and � D 22.5° is incident onto a �/4 plate with its fast axis oriented at
 D 45° with respect to the X axis. Find the state of polarization of the wave emergent
from the �/4 plate.

The circle diagram was used to solve the same question in Section 6.2.5, Fig. 6.10.

Solution
The following steps will be taken:

1. Calculate A, B, and  of the incident wave.
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2. Find B0/A0, and 0 of the emergent wave from the �/4 plate by means of the
Jones matrix.

3. Convert B0/A0, and 0 into a0, b0, and �0.

Step 1. The given parameters are

a D
p

3 V/m

b D 1 V/m

� D 22.5°

tanˇ D b/a D 1p
3

ˇ D 30°

From Eq. (6.125), ˛ is calculated:

cos 2˛ D cos 2� cos 2ˇ

D 0.354

˛ D 34.6°

Next, the retardance  will be found using Eq. (6.127):

tan D š cosec2� tan 2ˇ

D š2.45

where the C sign is for left-handed and the �sign is for right-handed. Since the problem
specifies right-handed, tan D C2.45 is eliminated.

The two possibilities for  are

 D �67.8° or C 112.2°

From Eq. (6.126), the correct choice of  is

 D �67.8°

From Eq. (6.113), A and B are found:

a2 C b2 D A2 C B2

D A2
1 C tan2 ˛�

A2 D 1 C 3

1 C tan2 34.6°

A D 1.65

B D 1.14



STATES OF POLARIZATION AND THEIR COMPONENT WAVES 445

Step 2. The Jones matrix of the �/4 plate whose fast axis azimuth angle  is 45°

is used to calculate emergent wave.

[
Ex

Ey

]
D 1p

2

[
1 �j

�j 1

] [
1.65

1.14e�j67.8°

]

D 1p
2

[
1 e�j90°

e�j90° 1

] [
1.65

1.14e�j67.8°

]

D 1p
2

[
1.65 C 1.14e�j157.8°

1.65e�j90° C 1.14e�j67.8°

]

D 1p
2

[√[1.65 C 1.14 cos
�157.8°�]2 C [1.14 sin
�157.8°�]2ej�x√
[1.14 cos
�67.8°�]2 C [�1.65 C 1.14 sin
�67.8°�]2ej�y

]

D 1p
2

[√
0.595�2 C 
�0.43�2ej�x√

0.43�2 C 
�2.71�2ej�y

]

D 1p
2

[
0.73 e�j35.5°

2.74 e�j81.0

]
D e�j35.5°

p
2

[
0.733

2.74e�45.5°

]

0 D �45.5°

tan˛ D 2.74

0.733
D 3.74

˛0 D 75.0°

Step 3. From Eq. (6.99), � is found:

tan 2�0 D tan 2˛0 cos0

D 
�0.566�
0.72� D �0.407

2�0 D �22.2° or157.8°

Since 0 � �0 � 180°, and 0 � 2�0 � 360°, the negative value is rejected and �0 D 79°.
From Eq. (6.112), ˇ0 is calculated:

sin 2ˇ0 D sin 2˛0j sin0j
D 0.5 ð j�0.707j
D 0.354

ˇ0 D 10.36°

 D tanˇ0 D 0.18

sin0 D �0.707 < 0

The emergent wave is right-handed.

a02 C b02 D a02
1 C  2�
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From Eq. (6.113), the above equation is rewritten

A2 C B2 D a02
1 C  2�

and conservation of energy gives

A2 C B2 D a2 C b2 D a02 C b02

a02 D
p

3
2 C 1

1 C 0.182
D 3.87

a0 D 1.96

b0 D 0.35

Compare with the answer shown in Fig. 6.10 using a circle diagram.

PROBLEMS

6.1 A linearly polarized wave with A D p
3 V/m, and B D 1 V/m is incident

onto a �/4 plate with its fast axis along the x axis. A is the amplitude of
the Ex component wave, and B is the amplitude of the Ey component wave.
Obtain the emergent elliptically polarized wave by using the two different
conventions of E� D ejωt�jˇz and EC D e�jωtCjˇz representing a forward wave,
and demonstrate that both results are the same.

6.2 A linearly polarized wave with azimuth �1 D 63.4° is incident onto a retarder
with  D 315° whose fast axis is oriented along the x axis. Graphically
determine the azimuth angle �2, which is the angle between the major axis
of the emergent ellipse and the x axis, and the ellipticity  of the ellipse.

6.3 In Example 6.1, the direction of polarization of the incident light was fixed
and the fast axis of the �/4 plate (retarder with  D 90°) was rotated. The
results were drawn in Fig. 6.8. Draw the results (analogous to Fig. 6.8) for

0

q

Figure P6.3 A linearly polarized wave is incident onto a quarter-waveplate with its fast axis oriented
horizontally.
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the case when the direction of the fast axis is fixed horizontally, and the
direction of the incident linear polarization is rotated as shown in Fig. P6.3
at � D 0°, 22.5°, 45°, 67.5°, 90°, 112.5°, 135°, 157.5°, and 180°:

6.4 Decompose graphically an elliptically polarized wave into component waves
that are parallel and perpendicular to the major or minor axis, and verify that
the phase difference between the component waves is 90°.

6.5 Obtain graphically the state of polarization with the same configuration as that
shown in Fig. 6.10, but with the opposite handedness of rotation of the incident
wave, that is, left-handed.

6.6 A linearly polarized light wave is incident normal to a pair of polarizers P1

and P2 whose transmission axes are oriented at �1 and �2 (Fig. P6.6). Assume
k1 D 1 and k2 D 0 for both polarizers.

(a) The light is incident from P1 to P2. What is the orientation � of the linearly
polarized eigenvector?

(b) What is the orientation � of the linearly polarized eigenvector when the light
is incident from P2 to P1?

6.7 The horseshoe crab’s eyes are known to be polarization sensitive. It is believed
that this sensitivity is used as a means of navigating in sunlight, and the principle
involved is that of the polarization of sunlight by scattering from particles in
the water. Referring to the configuration in Fig. P6.7, how can the horseshoe
crab orient itself along a north–south line in the early morning? What is the
direction of polarization that the horseshoe crab sees when facing south in the
early morning?

6.8 Linearly polarized laser light (� D 0.63 µm) is transmitted through a quartz
crystal along its optical axis. Due to Rayleigh scattering from minute irregular-
ities in the crystal, one can observe a trace of the laser beam from the side of
the crystal. One may even notice a spatial modulation of the intensity along the

0

P1
P2

q2

E

q q1

Figure P6.6 Direction of the eigenvector (looking from the source).
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East
West

Figure P6.7 The horseshoe crab is known to be sensitive to polarized light.

Laser

Quartz

L

Figure P6.8 Modulation of the intensity of Rayleigh scattering inside a quartz crystal due to the
optical activity of the crystal.

trace, as illustrated in Fig. P6.8. If one assumes that the spatial modulation is
due to the rotary power, what is the period of the modulation? The rotary power
of quartz is 19.5 deg/mm at � D 0.63 µm and at a temperature of 20°C.

6.9 Figure 6.11 shows a diagram of a �/4 plate. If one assumes d1 > d2, is the
birefringence of the crystal in the figure positive or negative?

6.10 Devise a scheme to determine the directions of the fast and slow axes of a
retarder.

6.11 The ellipse shown in Fig. P6.11 was made with B/A D 1 and  D 0, just like
the ellipses shown in Fig. 6.4. Prove that the retardance  is identical to the
angle 6 ABC D 2ˇ on the ellipse.

6.12 Prove the following equalities:

(a) 
a2 � b2� sin 2� D 2AB cos.

(b) 
a2 � b2� cos 2� D 
A2 C B2� cos 2˛.
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45°

0

A

B

y

x

C

2b

Figure P6.11 Prove that 2ˇ is identical to the retardance  when B/A D 1 and  D 0.
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7

HOW TO CONSTRUCT AND
USE THE POINCARÉ SPHERE

In this chapter, the Argand diagram and the Poincaré sphere will be introduced as
additional graphical methods for dealing with polarization.

The Poincaré sphere was proposed as early as 1892 by the French scientist Henrie
Poincaré [1–6], but only in recent years has the Poincaré sphere been given the attention
it really deserves [6]. The Poincaré sphere is a projection of the Argand diagram onto a
spherical surface to make the diagram spherically symmetric [3]. Spherical symmetry
eliminates the step of rotating and rerotating the coordinates, which is necessary when
using the Argand diagram.

The Poincaré sphere can be used in:

1. Problems associated with any retardance or orientation of the fast axis.
2. Problems associated with a polarizer with any orientation.
3. Determining the Stokes parameters, which are the projections of a point on the

sphere to the equatorial plane.

Although primarily used for polarized waves, the Poincaré sphere can be extended to
partially polarized waves.

A special feature of the Poincaré sphere is the simplicity of manipulation. Regardless
of whether the incident wave is linearly polarized or elliptically polarized, whether the
desired quantities are the optical parameters of a lumped element or a distributed
element like the twist rate of an optical fiber [7], or whether the axis of the optical
element is horizontally oriented or tilted at an arbitrary angle, the procedure remains
the same. Multiple retarders undergo the same kind of manipulation. The answer after
each stage is provided as the manipulation continues.

Moreover, when parameters of optical components have to be selected to achieve a
particular state of polarization, the Poincaré sphere becomes even more valuable.

This chapter uses many results of Chapter 6 and should be considered as an exten-
sion of Chapter 6.

451
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7.1 COMPONENT FIELD RATIO IN THE COMPLEX PLANE

Let the complex number representation of the x and y component fields be

Ex D Aej��ωtCˇzC�x
 �7.1


Ey D Bej��ωtCˇzC�y
 �7.2


A new quantity, which is the ratio of these complex fields, is defined in polar form as

Ey

Ex
D

(
B

A

)
ej �7.3


where  is the retardance. The retardance  is the phase of the y component with
respect to that of the x component and is expressed as

 D �y � �x �7.4


As mentioned in Chapter 6, Eq. (7.3) is called the component field ratio. The compo-
nent field ratio is represented as a point P on the u–v complex plane, as shown in
Fig. 7.1. The magnitude 0P represents the amplitude ratio B/A�D tan˛
 and the phase
angle represents the retardance .

The real and imaginary parts of the component field ratio are

(
B

A

)
cos C j

(
B

A

)
sin D u C jv �7.5


u D tan˛ cos

v D tan˛ sin �7.6


with

B/A D tan˛ �7.7


Hence, the ratio v/u is simply

v

u
D tan �7.8


Each point on the u–v complex plane of the component field ratio corresponds to a
state of polarization because Eqs. (6.99) and (6.112) give the values of � and ˇ from
given ˛ and  values. This correspondence between states of polarization and points
in the u–v complex plane is illustrated in Fig. 7.2. Some observations will be made
concerning Figs. 7.1 and 7.2.

1. In the upper half-plane, 0 <  < � and sin > 0. From Eq. (6.126), all states in
this region are left-handed. In the lower half-plane, � <  < 2� and sin < 0,
and here the states are all right-handed.
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∆
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P(u,v)v

0

B A

Figure 7.1 Component field ratio in the complex plane.

2. Along the positive u axis,  D 0 and there is no phase difference between Ex

and Ey . The states are all linearly polarized, as seen from Eq. (6.112). According
to Eq. (6.99), the azimuth � of the linear polarization is equal to ˛ and increases
with u from horizontally polarized at u D 0 to vertically polarized at u D 1.

3. Since B/A > 0, the sign of u and v are determined solely by the value of the
retardance . Along the negative u axis,  D 180°. The retardance  D 180°

means that the direction of Ey is reversed from that of Ey in the corresponding
positive u direction as shown in Fig. 7.3. The azimuth � along the negative u
axis is the mirror image of that along the positive u axis.

4. Along the positive v axis,  D 90° and with an increase in v, ��D tan ˇ
 increases
within the range given by Eq. (6.108). According to Eq. (6.112), ˇ D ˛. In the
region above the u axis, the states are all left-handed elliptically polarized waves
from Eq. (6.126). Their major axis is horizontal in the region v < 1 and their
minor axis is horizontal in the region v > 1.

5. Along the negative v axis,  D �90°. With an increase in jvj, � increases within
the range given by Eq. (6.108). As with positive v, ˇ D ˛. Below the u axis
all states of polarization are right-handed elliptically polarized waves with their
major axis horizontal when jvj < 1 and with their minor axis horizontal when
jvj > 1.
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Figure 7.2 Ellipses on the complex plane of the complex amplitude ratio.

6. On the unit circle, B/A D 1 and ˛ is either 45° or 135°. The results shown in
Fig. 6.4 are arranged along the unit circle in Figs. 6.5 and 7.2. From Eq. (6.112),
the relationship between ˇ and  is

ˇ D 1
2 jj �7.9


The intercepts of the unit circle with the positive and negative v axes are left-
handed and right-handed circularly polarized waves, respectively.



CONSTANT AZIMUTH � AND ELLIPTICITY �� LINES IN THE COMPONENT FIELD RATIO COMPLEX PLANE 455

E with ∆ = p

E with ∆ = 0

Ey
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−Ey

q

− q0

Figure 7.3 E with  D 0 and E with  D �.

7.2 CONSTANT AZIMUTH q AND ELLIPTICITY εε LINES IN THE
COMPONENT FIELD RATIO COMPLEX PLANE

In Fig. 7.2, the states of polarization were drawn in the component field ratio plane.
The values of � and � were superposed on the values of ˛ and . In this section the
points having the same � values will be connected together, as well as the points
having the same � values. The two sets of � and � loci will be put together in
one component field ratio complex plane. This plane is referred to as the Argand
diagram.

7.2.1 Lines of Constant Azimuth q

In this section, a set of curves of constant � will be generated. The constant � line can
be generated if � is expressed in terms of u and v. Equations (6.99) and (7.6) are used
for this purpose.

tan 2� D

∣∣∣2 u

cos

∣∣∣
1 �

( u

cos

)2 cos �7.10


where the double-angle relationship of Eq. (6.96) was applied to the angle ˛.
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Inverting both sides of Eq. (7.10) gives

2u cot 2� D 1 �
( u

cos

)2
�7.11


Now, an alternate way of expressing Eq. (7.8) is

1

cos2 
D 1 C

(v
u

)2
�7.12


Inserting Eq. (7.12) into (7.11) gives

u2 C v2 C 2u cot 2� � 1 D 0 �7.13


which can be further rewritten as

�u C cot 2�
2 C v2 D cosec2 2� �7.14


Equation (7.14) is the expression of a circle with radius cosec 2� centered at
�� cot 2�, 0
. This is the contour of constant azimuth �. To be more exact, it is the
contour of constant tan 2�.

The intersections of the circle with the u and v axes are investigated. From Eq. (7.13)
with u D 0, the intersects P1 and P2 with the v axis are found:

v D š1 �7.15


As a matter of fact, since the �-dependent third term on the left-hand side of Eq. (7.13)
vanishes with u D 0, the curves for all values of � pass through the points P1

and P2.
From Eq. (7.14) with v D 0, the intersects with the u axis are found:

u D � cot 2� š 1

sin 2�

D � cos2 � C sin2 � š 1

2 cos � sin �

�7.16


The intersections are

u1 D tan � �7.17


u2 D � cot � D tan�� C 90°
 �7.18


A series of circles for different values of � are drawn in Fig. 7.4.
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Figure 7.4 Constant � curves.

A word of caution should be added. As mentioned at the beginning of this section,
the above curves are not curves of constant � but curves of constant tan 2�. The
multivalue problem of tan 2� has to be resolved. There is more than one value of �
that gives the same value of tan 2�. For example, both � D 30° and � D 120° give the
same value of tan 2�. The value of tan 2� is the same for � and � š 90°n, where n is
an integer and the correct value of � has to be selected. Equation (6.123) is useful for
making this selection:

�a2 � b2
 cos 2� D A2 � B2 �6.123


If a is chosen as the length of the major axis, then a2 � b2 is always a positive number.
Inside the unit circle in the u–v plane, B/A < 1 and A2 � B2 is also positive. Only the
� that satisfies cos 2� > 0 is permitted inside the unit circle.

On the other hand, outside the unit circle, A2 � B2 < 0 and, hence, only the � that
satisfies cos 2� < 0 is permitted outside the unit circle. The values of � indicated in
Fig. 7.4 are based on this selection.
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7.2.2 Lines of Constant Ellipticity ε

Similar to the lines of constant azimuth �, the lines of constant ellipticity � can be
obtained by expressing ��D tan ˇ
 in terms of u and v. First, the case of the left-
handed rotation, or j sinj D sin, is treated. Equation (6.112) will be used to find the
constant � line. Using the trigonometric relationship of Eq. (6.105), and then expressing
tan˛ in terms of v/�sin
 by means of Eq. (7.6), Eq. (6.112) is rewritten as

sin 2ˇ D 2v

1 C
(

v

sin

)2 �7.19


Now, sin2  is converted into tan2  so that Eq. (7.8) can be used. Equation (7.19)
becomes

u2 C v2 � 2v cosec 2ˇ C 1 D 0 �7.20


which can be rewritten further as

u2 C �v � cosec 2ˇ
2 D cot2 2ˇ �7.21


Equation (7.21) is the equation of a circle with radius cot 2ˇ centered at (0, cosec 2ˇ).
The constant � lines are plotted in Fig. 7.5.

Specific points on the circle will be investigated. The intersection with the u axis is
examined first. Setting v D 0 in Eq. (7.20) gives u2 C 1 D 0, and there is no intersection
with the u axis. The intersections with the v axis are found from Eq. (7.20) with
u D 0 as

v2 � 2v cosec 2ˇ C 1 D 0 �7.22


The two solutions of Eq. (7.22) are

v D cosec 2ˇ š
√

cosec2 2ˇ � 1

D 1 š cos 2ˇ

sin 2ˇ
�7.23


The solutions corresponding to the positive and negative signs in Eq. (7.23) are, respec-
tively,

v1 D cotˇ D 1

�
�7.24


v2 D tanˇ D � �7.25


Since � < 1, and hence v1 > v2, the lower intersection explicitly represents �. From
this information, the constant � lines for the left-handed rotation are drawn. These
circles all stay in the upper half of the u–v plane.
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Figure 7.5 Constant � circles.

Exactly the same procedure is repeated for the right-handed rotation except that
j sinj D � sin is used in Eq. (6.112). The result is

u2 C �v C cosec 2ˇ
2 D cot2 2ˇ �7.26


The circles represented by Eq. (7.26) fill the lower half-plane.

7.3 ARGAND DIAGRAM

The loci of the constant � and those of the constant � are combined together on the
same plane in Fig. 7.6. This diagram is called an Argand diagram [3,6] because its
shape resembles the spherical Argand gas lamps commonly used for street lighting in
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Argand lamp.

days of old [1]. The Argand diagram graphically represents � and � on the ˛ and 
plane. It permits us to find any two parameters in terms of the other two.

Just like the circle diagram and the Jones matrix described in Chapter 6, the Argand
diagram not only simplifies the procedure of the calculation but also provides the states
of polarization after each stage of the optical system.

The Poincaré sphere is nothing but a projection of the Argand diagram onto a unit
sphere. Knowledge about the Argand diagram is essential to a clear understanding of
the operation of the Poincaré sphere.

7.3.1 Solution Using a Ready-Made Argand Diagram

There are two ways of using the Argand diagram. One way is to draw in the lines on
the fully completed Argand diagram. The other way is to construct the constant � and
� curves only as needed. The advantage of the former way is simplicity, and that of
the latter is accuracy. Both ways will be explained using examples. For the first two
examples, the incident light is linearly polarized. Following these, two examples are
given where the incident light is elliptically polarized.

Example 7.1 Using the Argand diagram, answer the questions in Example 6.9, which
concerned the emergent state of polarization from a retarder with  D 38° and its
fast axis in the x direction. The parameters of the incident linear polarization were
Ex D 2.0 V/m and Ey D 3.1 V/m.

Solution With the given values of B/A D 1.55 and  D 38°, point P is picked as
shown in Fig. 7.6. The answer is read from the diagram as � D 60° and � D 0.3, which
matches the results that were given in Example 6.9. �

Example 7.2 Linearly polarized light with azimuth � D 165° is incident on a �/4
plate. Find the state of polarization of the emergent wave when the fast axis of the
�/4 plate is (a) along the x axis and (b) along the y axis.
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Figure 7.6 Argand diagram.

Solution
(a) The Argand diagram facilitates the calculation. Figure 7.7 shows the answer.

Since the incident light is linearly polarized, � D 0. The point P1, which represents the
incident light, is � D 165°, � D 0; or � D 165° on the u axis. From the measurement
of the length 0P1 D 0.27, the incident wave is(

B

A

)
ej D 0.27 ej180°

The introduction of the �/4 plate delays the phase of the y component by  D 90°

more than that of the x component and the component field ratio becomes 0.27 ej270° .
Point P1 moves to point P2. The answer is right-handed elliptical polarization with
� D 0° and � D 0.27.
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Figure 7.7 Solution of Example 7.2.

(b) This situation is similar to (a) but with  D �90°. The point P1 moves to point
P3 and the answer is the left-handed elliptical polarization with � D 0° and � D 0.27.

�

Example 7.3 Example 6.1 looked at how the state of polarization of a horizontally
linearly polarized wave changes as the azimuth of the fast axis of the �/4 plate is
rotated. Repeat this exercise using the Argand diagram. Solve only for  D 22.5°, for
 D 67.5°, and for  D 112.5°.

Solution It should be remembered that Eqs. (6.1) and (6.2) are based on the condition
that the x axis is parallel to the fast axis of the retarder. Just as was done analytically
in Section 6.8.1, the incident field E has to be represented in the coordinates rotated by
 so that the new x0 axis aligns with the fast axis of the retarder. After this has been
done, the retardation is accounted for and, finally, the coordinates are rotated back by
� to express the result in the original coordinates.

Let us start with the case  D 22.5°. The incident light is ��, �
 D �0, 0
 and is
represented by P0 in Fig. 7.8. The coordinates are rotated by C22.5° so that the new x0
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axis aligns with the fast axis. The azimuth of the incident light in the new coordinates
decreases by the same amount and in the rotated coordinates, � D �22.5°, which is
equivalent to � D 157.5°. Recall that � D 157.4° rather than � D �22.5° has to be
used because of the restriction of 0 � � < 180°. This point is represented by P1

1 at
��, �
 D �157.5°, 0
. The �/4 plate rotates P1

1 by 90° as indicated by the dotted line
to P1

2 at ��, �
 D �0, 0.42
. The coordinates are then rotated back by �22.5° in order
to express the emergent light in the original coordinates. The azimuth of the emergent
light in the rotated back coordinates increases the same amount. P1

2 moves along the
� D 0.42 line to point P1

3 at ��, �
 D �22.5°, 0.42
. The handedness is right-handed.
Next, the case with  D 67.5° will be solved. The incident light is again at P0.

The coordinates are rotated by C67.5° to match the new x0 axis to the fast axis. The
azimuth of the incident light in the new coordinates decreases by the same amount and
becomes � D �67.5°, which is equivalent to � D 112.5, which meets the restriction 0 �
� < 180°. The incident light is represented by P3

1 at ��, �
 D �112.5°, 0
. The retardance
of 90° brings the point P3

1 as indicated by the dotted line to P3
2 at ��, �
 D �90°, 0.42
.
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1
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q = 0°

q = 90°

0 u

v

Figure 7.8 Change in the state of polarization as the fast axis of the �/4 plate is rotated, as in
Example 6.1.
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Back-rotation of the coordinates moves P3
2 along the constant � line to P3

3 at ��, �
 D
�157.5°, 0.42
. The handedness is also right-handed.

Finally, the case the  D 112.5° will be solved. The coordinates are rotated by
C112.5° and as a result the azimuth of the incident light in the new coordinates is
� D �112.5°, which is equivalent to � D 67.5° to meet the restriction of 0 � � < 180°.
The incident light is indicated by P5

1 at ��, �
 D �67.5°, 0
. The retardance rotates
P5

1 as indicated by the dotted line to P5
2, where ��, �
 D �90°, 0.42
. Back-rotation of

the coordinates by �112.5° along � D 0.42 brings P5
2 to P5

3 at � D 202.5°, which is
equivalent to � D 22.5°, which meets the restriction 0 � � < 180°. The final result is
at P5

3 with ��, �
 D �22.5, 0.42
. The handedness is left-handed. �

The incident waves of the next two examples are elliptically polarized.

q = 33°
∈= 0.2

∈=−1 1
3

90°

1

P2(33°, 0.2)

u

v

0

P1(22.5°, 1/  3 )

q = 22.5°

1−1

Figure 7.9 Solution of Example 7.4 using the Argand diagram.
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Example 7.4 A right-handed elliptically polarized wave with � D 22.5° and � D
1/

p
3 is incident on a �/4 plate whose fast axis is along the x axis. Find the state of

polarization of the emergent light using the Argand diagram.

Solution Point P1, which represents the state of polarization of the incident wave,
is plotted at ��, �
 D �22.5°, 1/

p
3
 in the lower half-plane as in Fig. 7.9. The �/4

plate with its fast axis along the x axis moves P1 by 90° counterclockwise along the
circumference with radius 0P1 to point P2. The coordinates of P2 represent the state
of polarization of the emergent wave. Point P2 is read from the Argand diagram at
approximately ��, �
 D �33°, 0.2
 in the upper half-plane. The emergent wave therefore
has left-handed elliptical polarization with � D 33° and � D 0.2. �

Example 7.5 The same elliptically polarized wave is incident onto a �/4 plate but
this time its fast axis is not along the x axis but is tilted from the x axis by  D 45°.
Find the state of polarization of the emergent wave.

Solution Now that the fast axis is not along the x axis, the coordinates have to
be rotated by ; then the retardance is accounted for, followed by a rotation back
by �. The state of polarization of the incident wave is represented by P1 at
��, �
 D �22.5°, 1/

p
3
 in the lower half-plane in Fig. 7.10. Due to the rotation of

the coordinates, point P1 moves along the � D 1/
p

3 line to point P2 at ��, �
 D
��22.5°, 1/

p
3
 D �157.5°, 1/

p
3
. The �/4 plate rotates the point by C90° to point

P3 at ��, �
 D �34.2°, 0.2
. Finally, the coordinates are rotated back by � D 45°.
The azimuth of the emergent light in the rotated back coordinates increases the same
amount. P3 is brought to the final point P4 at ��, �
 D �79.2°, 0.2
 in the lower half-
plane. The emergent wave has right-handed elliptical polarization with � D 79.2° with
� D 0.2. �

7.3.2 Orthogonality Between Constant q and ε Lines

It will be shown that the constant � lines and the constant � lines are orthogonal to
each other. Using this fact, a constant � line can be drawn from a constant � line
or vice versa. In the next section, the orthogonality relationship is used to construct
custom-made Argand diagrams for specific problems.

The slope of the constant � line is the derivative of Eq. (7.13) with respect to u,

2u C 2vv0 C 2 cot 2� D 0 �7.27


where v0 D dv/du. Multiplying Eq. (7.27) by u and subtracting Eq. (7.13) gives

v0 D �u2 � v2 C 1

2uv
�7.28


Similarly, the slope of the line of constant � is, from Eq. (7.20),

2u C 2vv0 � 2v0 cosec 2ˇ D 0 �7.29
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Figure 7.10 Solution of Example 7.5 using the Argand diagram.

Multiplying Eq. (7.29) by v and multiplying Eq. (7.20) by v0, and then subtracting
gives

v0 D 2uv

u2 � v2 C 1
�7.30


From Eqs. (7.28) and (7.30), the slopes of the two curves are negative reciprocals and
therefore the two curves are orthogonal to each other.

7.3.3 Solution Using a Custom-Made Argand Diagram

In using an already drawn Argand diagram, one frequently has to rely on interpolation
between the lines, unless the point falls exactly on the line. What will be described here
is a method of drawing specific constant � and � lines to solve a particular problem. The
accuracy of a custom-made Argand diagram is higher than the accuracy of interpolating
a ready-made diagram.
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Figure 7.11 Curves for constant � and �.

First of all, information about the intersections with the axes is useful in drawing
lines. The information so far obtained is summarized in Fig. 7.11.

Figure 7.12 illustrates how to draw the constant � and � lines that were used to
solve Example 7.4 in Fig. 7.9. The circled numbers in the figure correspond to the
step numbers below. First, the circles associated with the state of polarization of the
incident light are drawn. The effect of the �/4 plate is accounted for to obtain the final
results.


1 Find the point �u, v
 D �tan 22.5°, 0
 on the u axes. If 5 cm is taken as the unit
length in the drawing, �u, v
 is located at 2.1 cm horizontally from the origin.


2 Draw the bisect of a line connecting �tan 22.5°, 0
 and �0,�1
. Extend the bisect
to find intersection C1 with the u axis.


3 Centered at C1, draw the constant � circle passing through points �tan 22.5°, 0

and �0,�1
. This is the circle of � D 22.5°.


4 Next, the line of � D 1/
p

3 will be found. Find the point �u, v
 D �0,�1/
p

3
,
which is �2.9 cm vertically from the origin from Eq. (7.25).
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Figure 7.12 How to draw the constant � and � lines. (a) The first seven steps for drawing your own
Argand diagram. (b) Steps from 7 to 13 for drawing your own Argand diagram.
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5 Find the point �u, v
 D �0,�p
3
, which is �8.7 cm vertically from the origin

from Eq. (7.24).


6 Find the center C2�0,� 1
2 �1/

p
3 C p

3

. C2 is the circle of � D 1/
p

3.

7 The intersection P1 between the circles centered at C1 and C2 is found. The

phasor 0P1 represents the component field ratio 0.69e�j67.5° of the incident light.

8 Rotate point P1 counterclockwise by 90° to point P2 to account for the retardance

 D 90° as shown in Fig. 7.12b.

9 Next, the value of � at P2 will be found. Find the bisect of the line connecting

P2 and the point (0,1), and extend it to find the intersection C3 with the u axis.

10 Centered at C3 and passing through points P2 and (0,1), draw the constant �

circle.

11 The intersection of the circle centered at C3 with the u axis is measured as 3.3 cm

horizontally from the origin. The value of u at this point is 0.66; tan � D 0.66
or � D 33.4°.


12 Finally, the circle of constant � will be found. Draw the straight line C3P2.

13 Draw the normal to the straight line C3P2 from the point P2, and this will locate

the intersection C4 with the v axis. Orthogonality between constant � and � lines
is being invoked to construct the desired � line from the � D 33.4° line.


14 Centered at C4, draw the constant � circle passing through P2. The intersection
of the circle with the v axis is 0.9 cm from the origin, which is v D 0.18. Thus,
� D 0.18.

The state of polarization of the emergent light is left-handed circularly polarized with
��, �
 D �33.4°, 0.18
. The custom-made Argand diagram provides better accuracy than
the results obtained in Example 7.4.

7.4 FROM ARGAND DIAGRAM TO POINCARÉ SPHERE

The Poincaré sphere is generated by back projecting the Argand diagram onto a unit
diameter sphere. Figure 7.13 illustrates the relative orientation between the Poincaré
sphere and the Argand diagram. The surface of the Poincaré sphere touches at the
origin of the Argand diagram. The real axis u is back-projected onto the equator of
the sphere and the imaginary axis v is back-projected onto the great circle passing
through the north and south poles of the sphere. The plane of the great circle contains
the center of the sphere. The diameter of the sphere being unity, points (0, 1) and (0,
�1) on the Argand diagram back-project onto the north and south poles, respectively.
Back-projections of other general points will be calculated using elementary analytic
geometry in the next section.

7.4.1 Analytic Geometry of Back-Projection

As shown in Fig. 7.13, all the points on the Argand diagram are back-projected onto
the single point 00, which is diametrically opposite to the tangent point 0. The concept
of the Poincaré sphere boils down to finding the intersection of a straight line with the
surface of a sphere.
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Figure 7.13 Poincaré sphere and Argand diagram.

Let us begin with the expression for a straight line passing through two specific
points in space. Referring to Fig. 7.14, let the coordinates of these two points P1 and
P2 be �a1, b1, c1
 and �a2, b2, c2
. If these two points are represented by position vectors
r1 and r2, then the line segment P1P2 is expressed by the vector r2 � r1. Let us pick
another point P at �x, y, z
. If all three points P1, P2, and P lie on the same straight
line, then the line segments P1P and P1P2 must be parallel and share at least one
point in common. The line segment P1P is represented by the vector r � r1. The line
segments P1P and P1P2 share point P1. Now, the condition that the two line segments



FROM ARGAND DIAGRAM TO POINCARÉ SPHERE 471
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Figure 7.14 Geometry of a straight line in space.

are parallel is that the vector product is zero:

�r2 � r1
 ð �r � r1
 D 0 �7.31


Equation (7.31) leads to the following expression of a straight line passing through
points P1, P2, and P:

x � a1

a2 � a1
D y � b1

b2 � b1
D z � c1

c2 � c1
�7.32


Both the sphere and the Argand diagram will be put into x, y, z coordinates, as
shown in Fig. 7.15. Let the point where two surfaces touch be O. Let us pick the
origin C of the x, y, z coordinates at the center of the Poincaré sphere, and let the
radius of the Poincaré sphere be 1

2 . Let P�x, y, z
 be a point on the surface of the
sphere. The choice of the senses of the coordinates should be noted. The positive x
direction is from C to 0. The positive y direction is antiparallel to the u axis (indicated

as
�!
CW in the figure) so that the direction of the positive z axis is vertically upward in

the right-hand rectangular coordinate system. In this arrangement the Argand diagram
stands vertically in the plane of x D 1

2 with its imaginary axis parallel to the z axis.
The point 00 diametrically opposite to point 0 is at �� 1

2 , 0, 0
. All back-projections
converge to point 00.

The coordinates of a point p on the Argand diagram are, from Eq. (7.6),

�a2, b2, c2
 D ( 1
2 ,� tan˛ cos, tan˛ sin

)
and the coordinates of point 00 are

�a1, b1, c1
 D (� 1
2 , 0, 0

)
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Figure 7.15 Projection of a point on the Argand diagram to the Poincaré sphere.

The expression for the straight line connecting 00 and p is, from Eq. (7.32),

x C 1
2

1
D y

� tan˛ cos
D z

tan˛ sin
�7.33


The expression for the unit diameter sphere is

x2 C y2 C z2 D 1
4 �7.34
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The solution of the simultaneous equations (7.33) and (7.34) gives the intersection of
the line with the sphere. The calculation of the solution is simpler than it looks. First,
the value of x will be found. Solving Eq. (7.33) for y and z in terms of x gives

y D � (
x C 1

2

)
tan˛ cos �7.35


z D (
x C 1

2

)
tan˛ sin �7.36


Insertion of Eqs. (7.35) and (7.36) into Eq. (7.34) gives

x2 cos2 ˛ C (
x C 1

2

)2
sin2 ˛ D 1

4 cos2 ˛

which can be rewritten in terms of cos 2˛ as

4x2 C 2x�1 � cos 2˛
 � cos 2˛ D 0 �7.37


which can be factored as

�2x � cos 2˛
�2x C 1
 D 0 �7.38


The intersections are at

2x D cos 2˛ �7.39


and

2x D �1 �7.40


Equation (7.39) gives the intersection P, and Eq. (7.40) gives the point 00 on the sphere.
Using Eq. (6.125), Eq. (7.39) becomes

2x D cos 2ˇ cos 2� �7.41


Next, y is obtained by inserting Eq. (7.39) into (7.35) and expressing cos 2˛ in
terms of cos˛ as

2y D � sin 2˛ cos �7.42


Like Eq. (7.41), Eq. (7.42) will be expressed in terms of ˇ and �. In Eq. (6.99), tan 2˛
is first expressed as sin 2˛/ cos 2˛ and then Eq. (6.125) is used as a substitution for
cos 2˛. The resulting relationship is

cos 2ˇ sin 2� D sin 2˛ cos �7.43


Insertion of Eq. (7.43) into (7.42) gives

2y D � cos 2ˇ sin 2� �7.44


Finally, the value of z will be obtained from Eqs. (7.36) and (7.39):

2z D sin 2˛ sin �7.45


Using Eq. (6.112),

2z D
{

sin 2ˇ for sin > 0
� sin 2ˇ for sin < 0

�7.46
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In summary, the coordinates of the projected point P on the sphere are

x D 1
2 cos 2ˇ cos 2� �7.41


y D � 1
2 cos 2ˇ sin 2� �7.44


z D š 1
2 sin 2ˇ �7.46


where the C sign of z is for left-handed rotation while the � sign of z is for right-handed
rotation. The Poincaré sphere can now be drawn from these results.

7.4.2 Poincaré Sphere

Let us first express point P�x, y, z
 in terms of the latitude l and longitude k on
the sphere, rather than �x, y, z
 coordinates. The latitude l (angle of elevation) of an
arbitrary point �x, y, z
 on the sphere of radius 1

2 is, from Fig. 7.16,

l D sin�1 2z �7.47


The z coordinate of P, back-projected from point p, which is the intersection point
of the constant � and � lines on the Argand diagram, is given by Eq. (7.46). Inserting
Eq. (7.46) into (7.47) gives

l D 2ˇ �7.48


Thus, the latitude l of point P is 2ˇ and is linearly proportional to ˇ. The constant ˇ
(or �) lines on the Poincaré sphere are equally spaced in ˇ, unlike the unequal spacing
of the corresponding lines in the Argand diagram.

Moreover, as point p on the Argand diagram shown in Fig. 7.16 moves along
the constant ˇ line, its height in the v direction varies. The corresponding point P on the
Poincaré sphere, however, stays at the same height or at the same latitude l, and the
constant ˇ lines are cylindrically symmetric.

Next, the longitude k of an arbitrary point �x, y, z
 on the sphere is, from Fig. 7.17,

k D tan�1
(�y

x

)
�7.49


The x and y coordinates of P back-projected from point p are given by Eqs. (7.41)
and (7.44), and they are inserted into Eq. (7.49) to obtain

k D 2� �7.50


The longitude k is 2� and is linearly proportional to �. The constant � lines are also
equally spaced in � on the Poincaré sphere. Thus, both constant ˇ lines and constant
� lines are equally spaced on the Poincaré sphere. These equal spacings together with
the above-mentioned cylindrical symmetry make the Poincaré sphere strikingly more
versatile than the Argand diagram.

The back-projection of the other two quantities B/A and  will now be considered.
An arc that connects two points on a spherical surface with the shortest distance along
the surface is called a geodesic. In Fig. 7.18, the projection of 0p in the Argand diagram
is the geodesic 0P on the Poincaré sphere. Since the Argand diagram is the tangent
plane 0, the angle  on the Argand diagram is preserved when it is back-projected
onto the sphere, and the angle of the geodesic 0P with respect to the equator is also .
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Figure 7.16 Projection of the constant � curve onto the Poincaré sphere.

As shown in Fig. 7.18, B/A�D tan˛
 is represented by 0p. Since 00
0 D 1,

6 P000 D ˛ �7.51


6 PC0 D 2˛ �7.52


Thus, the Poincaré sphere provides a quick way of finding ˛ from a given state of
polarization. Referring to Fig. 7.19, it is interesting to note that, the radius of the sphere
being 1

2 , geodesic PT is ˇ, and geodesic 0P is ˛.



476 HOW TO CONSTRUCT AND USE THE POINCARÉ SPHERE
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Figure 7.17 Projection of the constant � line onto the Poincaré sphere.

Finally, the direction of the movement of the back-projected point on the sphere
relative to that on the Argand diagram will be considered. Referring to Fig. 7.16, as
the point moves from the left to the right, that is, from m to p on the Argand diagram,
the projected point moves from the right to the left, that is, from M to P on the sphere,
when observed from outside the sphere facing toward the center of the sphere. The
points on the Argand diagram and on the sphere are more or less like mirror images
of each other and are left and right reversed. This mirror image effect influences the
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Figure 7.18 Directions of increasing  and �.

direction of increasing . The direction of increasing  is counterclockwise on the
Argand diagram, whereas on the Poincaré sphere, the direction of increasing  is
clockwise, as indicated when the sphere is viewed from the reader’s vantage point in
Fig. 7.18. Similarly, referring to Fig. 7.18, � increases toward the right on the Argand
diagram, and the direction of increasing � is clockwise when the sphere is viewed from
a point above the north pole. Whenever confusion about the direction arises, always
go back to the Argand diagram, which is, after all, the basis for the Poincaré sphere.
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Figure 7.19 Geodesic triangle.

Figure 7.20 illustrates various states of polarization and their corresponding loca-
tions on the Poincaré sphere. The latitude lines are constant ˇ (or �) lines. Along the
equator, � D 0 and the states of polarizations are linearly polarized waves with various
azimuth angles. As higher latitudes are approached, the ellipticity increases and finally
reaches unity at the poles. The states of polarization with ˇ are represented by the
latitude of 2ˇ. The state of polarization ˇ D �/4 (or � D tan ˇ D 1) is represented by
the north pole of the sphere.
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Figure 7.20 Poincaré sphere based on the convention of e�jωt. The Poincaré sphere based on the
ejωt convention is obtained by rotating in the plane of the page by 180°.

The longitudinal lines are constant � (or azimuth) lines. The reference of the longi-
tude is the longitudinal line passing through point 0. The state of polarization with �
is represented by the longitudinal line of 2�. The state of polarization with � D 90°

is represented by the longitudinal line that passes through point 00. The value of the
azimuth increases in a clockwise sense when the sphere is viewed from a point above
the north pole. The state of polarization with � D 180° is represented by the longitude
line that passes through point 0 again. Point 0 represents horizontal linear polarization
and point 00, vertical linear polarization. These points are often designated by points H
and V. The azimuths of the ellipses along the same longitude stay the same. The states
of polarization in the northern hemisphere are all left-handed rotation, while those in
the southern hemisphere are right-handed rotation.

It is important to remember that the physical locations of the constant � and ˇ
graduation lines are at 2� and 2ˇ, respectively, on the Poincaré sphere, while the
retardance ° means a rotation of the point on the Poincaré sphere by  degrees, not
2 degrees.

Depending on which convention, e�jωt or ejωt is used, the same retardance can
be expressed by either Eq. (6.8) or (6.10). The Poincaré sphere shown in Fig. 7.20
is based on the e�jωt convention of this book. The Poincaré sphere based on ejωt,
however, can be obtained by rotating the figure by 180° in the plane of the page.

7.5 POINCARÉ SPHERE SOLUTIONS FOR RETARDERS

Uses of the Poincaré sphere will be explained by a series of examples [4].
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Example 7.6 Light linearly polarized at � D 45° is incident onto a �/4 plate whose
fast axis is along the x axis. Find the state of polarization of the emergent light using
both the Argand diagram and the Poincaré sphere.

Solution The input light is characterized by B/A D 1 and � D 0 and is represented
by point p1 at �u, v
 D �1, 0
 on the Argand diagram, as shown in Fig. 7.21. The �/4
plate with its fast axis along the x axis rotates point p1 by 90° to p2 at �u, v
 D �0, 1
,
which represents left-handed circular polarization.

The same problem will be solved by using the Poincaré sphere. The back-projected
point from point p1 on the Argand diagram to the Poincaré sphere is P1 at ��, �
 D
�45°, 0
 in either Fig. 7.20 or 7.21.

Geodesic 0P1 represents B/A. With point 0 as the center of rotation, point P1 is
rotated by 90° in a clockwise direction due to the �/4 plate. The final point P2 is on
the north pole. The answer is left-handed circularly polarized light. The answers agree
with the result in Fig. 6.4.

The next example deals with a retarder whose fast axis is at an arbitrary angle and
is along neither the x nor y axis. A significant advantage of the Poincaré sphere over
the Argand diagram is seen.

Example 7.7 A linearly polarized light with azimuth � D 40° is incident onto a �/4
plate whose fast axis is oriented at  D 30°. Find the state of polarization of the
emergent light.

Solution The orientation of the incident light and the �/4 plate are represented by P1

and R, respectively, in Fig. 7.22a. First, the coordinates have to be rotated by 30° so
that the new x0 axis lines up with the fast axis of the �/4 plate. When the coordinates are
rotated by C30°, the values of � and  are decreased by 30° as shown in Example 7.3.
After the rotation of the coordinate system, point P1 and R are transferred to P0

1 and
R0 at � D 10° and 0°, respectively, as shown in Fig. 7.22b. The �/4 plate rotates P0

1
to P0

2 around R0. The final result is obtained by rotating the coordinates back by �30°

and the value of � is increased by 30°. As shown in Fig. 7.22c, the final point is P00
2.

Approximate values of � D 30°, � D 0.17 can be read directly from the graduation on
the Poincaré sphere.

An important feature of the Poincaré sphere is that rotation and rerotation of the
coordinate system can be avoided because of the cylindrical symmetry of the Poincaré
sphere with respect to the polar axis. Geodesic P0

1P
0
2, which was obtained following the

rotation of the coordinates is the same as geodesic P00
1P

00
2. Rotation of the coordinates

by 30° followed by rotation back by �30° is not necessary. The same result can be
obtained by rotating P00

1 to P00
2 by 90° around point R00 from the very beginning owing

to the symmetry that the Poincaré sphere has. This is one of the major advantages of
the Poincaré sphere. Compare this with the steps needed when the Argand diagram
was used in Example 7.3.
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Figure 7.21 Linearly polarized light with � D 45° is incident onto a �/4 plate whose fast axis is along
the x axis. The Poincaré sphere with Argand diagram is used to find the emergent wave.
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Figure 7.22 Linearly polarized light with azimuth � D 40° is incident onto a �/4 plate whose fast axis
is oriented at  D 30°. (a) State of polarization of the incident wave and the �/4 plate are plotted on
the Poincaré sphere. (b) Conversion of the state of polarization due to the �/4 plate after rotation of
the coordinates. (c) Similarity between the operations with and without the rotation of the coordinates.
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A more accurate number can be obtained by noting the geometry. As already shown
in Fig. 7.19, geodesic P00

2R
00 in Fig. 7.22c represents ˇ. From the relationship P00

2R
00 D

P00
1R

00 combined with P00
1R

00 D ��/180°
 ð 10, ˇ is found to be ˇ D ��/180°
 ð 10 rad
and � D tan ˇ D 0.176. �

Example 7.8 Using the Poincaré sphere solve the following problems:

(a) Prove that a �/4 plate can convert a left-handed or right-handed circularly
polarized wave into a linearly polarized wave regardless of the orientation of
the fast axis of the �/4 plate.

(b) Identify the handedness of an incident circularly polarized wave by using a �/4
plate of known fast axis orientation.

(c) Find the proportion of powers of each handedness when the incident light is a
mixture of left-handed and right-handed circularly polarized waves.

(d) Consider the converse to part (a). Can a �/4 plate convert a linearly polarized
wave into a circularly polarized wave, regardless of the orientation of the fast
axis of the �/4 plate?

Solution
(a) As seen from Fig. 7.23, regardless of the orientation of the �/4 plate, the 90°

rotation from either pole brings the point onto the equator and the emergent light
becomes linearly polarized. The direction of the emergent linear polarization, however,
depends on the orientation of the fast axis of the �/4 plate.

(b) As seen from Fig. 7.23, when the fast axis is oriented at , the direction of the
polarization of the emergent light is at � D  š 45°. If the direction of polarization of
the emergent light is at � D  C 45°, the incident light has right-handed rotation, and
if the direction is at � D  � 45°, the incident light has left-handed rotation. In this
manner, the handedness of the incident wave is identified.

(c) As shown in Fig. 7.23, mixed left and right circularly polarized waves are inci-
dent on a �/4 plate with fast axis at  D 45°. The north pole is brought to H and
the south pole is brought to V. The emergent light is a combination of horizontal
and vertical linear polarization, which can be separated using a polarization beam-
splitter. Figure 7.24 illustrates the arrangement for measuring the ratio, between the
two oppositely handed rotations.

(d) As illustrated in Fig. 7.25, if the orientation of the fast axis is other than š45°

with respect to the direction of the linear polarization of the incident light, represented
by point P1, then it is not possible for the emergent state, represented by P0

1, to reach
the pole. Therefore, the converse to part (a) is not true. A �/4 plate cannot convert
a linearly polarized wave into a circularly polarized wave when the fast axis is in an
arbitrary orientation. A circularly polarized wave is obtainable only when the fast axis
is at š45° with respect to the direction of linear polarization of the incident light. �

Example 7.9 Fabricate your own Poincaré sphere by drawing the state of polariza-
tions on flat one-eighth sectors that can later be taped together to form a sphere. Choose
the length of

p
A2 C B2 to be �/20 of the radius of the Poincaré sphere. Draw the states

of polarization at steps of � D 22.5° and ˇ D 11.25°.
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Figure 7.23 Regardless of the orientation of the fast axis, a �/4 plate converts a circularly polarized
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Figure 7.24 Determination of the ratio of powers of left- and right-handed circular polarizations.

Solution The expressions for the lengths of the major and minor axes of the ellipses
for a given ˇ are obtained from Eqs. (6.100), (6.107) and (6.113), as

a D
√

A2 C B2

1 C tan2 ˇ
�7.53


b D a tanˇ �7.54


Figure 7.26 shows the finished pattern.
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Figure 7.25 The difference in angle between the azimuth of the incident wave and the fast axis of
the �/4 plate has to be 45° to convert a linearly polarized wave into a circularly polarized wave.

Try to fabricate your own Poincaré sphere by photo copying the enlarged pattern.
Firm materials such as acetate sheets for overhead projectors work best. Then cut and
tape the sections to form a balloon. Such a balloon made out of thin colorful paper is
called a Fusen and is a popular toy among Japanese children. �

7.6 POINCARÉ SPHERE SOLUTIONS FOR POLARIZERS

The Poincaré sphere will be used to find the power transmittance k of a polarizer [4],
which is the ratio of the polarizer’s transmitted to incident power.

Consider light of an arbitrary state of polarization incident onto a polarizer whose
transmission axis is along the x axis as shown in Fig. 7.27a. Of the total power of
the incident light A2 C B2, only the component in the x direction transmits through the
polarizer. The power transmittance k of an ideal polarizer �k1 D 1, k2 D 0
 is

k D A2

A2 C B2
�7.55


Equation (7.55) is true for any state of polarization as long as the direction of the
transmission axis is along the x axis.



486 HOW TO CONSTRUCT AND USE THE POINCARÉ SPHERE

Figure 7.26 Pattern for making a Poincaré sphere.
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Japanese children playing with a Fusen.

With Eq. (7.7), Eq. (7.55) becomes

k D cos2 ˛ �7.56


Thus, once ˛ of the incident light is found by the Poincaré sphere, k can be calculated
from Eq. (7.56).

A method of finding ˛ using the Poincaré sphere will be explained. First, the
transmission axis of the polarizer is assumed to be along the x axis. Let the state of
polarization of the incident light be ��, ˇ
, as represented by point P1 on the Poincaré
sphere shown in Fig. 7.27b.

In order to find 2˛, 6 P0CP1 has to be found, where P0 represents the azimuth of
the polarizer transmission axis and is located at H for this case. The sphere is cut by
a plane perpendicular to the HV axis and containing point P1��, ˇ
. Point Q is any
point on the circle made by the intersection of the perpendicular plane and the sphere,
and 6 P0CQ is always equal to 6 P0CP1. Thus, when Q falls on the equator,

2˛ D 2�0 or ˛ D �0

where �0 is the value shown on the graduation line. Recall from Fig. 7.20 that the value
shown on the graduation line, for instance, �0 D 45°, is at the longitudinal angle of 90°

from point 0 or H.
In short, in order to find ˛:

1. Draw the cross-sectional circle that contains point P1��, �
 of the incident light
and is perpendicular to VH.

2. Find the intersection of the cross-sectional circle with the equator.
3. The value of the graduation line of the intersection is the desired ˛.

A few interesting observations are (1) � 6D �0, unless � D 45°, and (2) 6 CVP1 D
6 CVQ D ˛, and this angle can also be used to find ˛.

Now consider the situation where the transmission axis of the polarizer is not along
the x axis and the azimuth is . This is represented by P in Fig. 7.27c. One way to
solve this problem is to rotate the coordinates by  so that the x axis lines up with
the transmission axis. The value ˛ is found as in Fig. 7.27b. Once ˛ is obtained, the
coordinates are rotated back by �. A simpler approach is to use the symmetry of
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Figure 7.27 Finding the transmittance of a polarizer using the Poincaré sphere. (a) An elliptically
polarized wave is incident onto a polarizer. (b)  D 0. (c)  D .

the sphere, as was done for the retarder, and eliminate the rotation and rerotation of
coordinates. The procedure is the same as the first case except the plane cutting the
sphere has to be perpendicular to PC rather than P0C, as illustrated in Fig. 7.27c.
The required angle ˛ is

˛ D P � �00 �7.57


where values are those shown on the graduation line.
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Example 7.10 Using the Poincaré sphere, find the transmittance through an ideal
polarizer with the following configurations:

(a) Vertically polarized light is incident onto a polarizer whose transmission axis is
horizontal.

(b) Linearly polarized light with azimuth 45° is incident onto a polarizer whose
transmission axis is along the x axis.

(c) A circularly polarized wave with left-hand rotation is incident onto a polarizer
whose transmission axis is at .

(d) Left-handed elliptically polarized light with � D 0.414 and � D 60° is incident
onto a polarizer whose transmission axis is at  D 20°.

Solution
(a) With Fig. 7.27b, the cross-sectional circle is tangent to the sphere at V, and the

intersection with the equator is at the graduation line of �0 D 90°, and thus ˛ D 90°.

k D cos2 90° D 0

(b) With Fig. 7.27b, the cross-sectional circle cuts the sphere into equal halves. The
intersection with the equator is at the graduation line of � D 45° and ˛ D 45°.

k D cos2 45° D 0.5

(c) The cross-sectional circle is through the N–S axis and perpendicular to CP and

˛ D �0 � P0
 D 45°

k D cos2 45° D 0.5

(d) Referring to Fig. 7.28, the cross-sectional circle containing the point at �� D
60°, � D 0.414
 is drawn and is perpendicular to CP. The intersection with the equator
is at the graduation line of

�0 D 61°,

˛ D �0 � P D 61° � 20° D 41°

k D 0.56

It should be noted that �0 6D 60°. �

The analytical expression for k gives better accuracy. Rewriting Eq. (7.56) in terms
of cos 2˛, and using Eq. (6.125) gives

k D 1
2 �1 C cos 2� cos 2ˇ
 �7.58
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Figure 7.28 The Poincaré sphere is used to find the transmittance through a polarizer.

7.7 POINCARÉ SPHERE TRACES

For ease and accuracy, traces of the Poincaré sphere on a plane are often used [3]. Any
convenient plane can be selected. The method will be explained using the example that
a linearly polarized wave with � D 50° is transmitted through a compensator whose
fast axis is oriented at  D 30° with retardance  D 135°.

Figure 7.29 explains how the traces are drawn [8]. The top drawing is the projection
onto the horizontal plane. In this plane, the azimuth angles are clearly seen. Point P1

corresponds to the azimuth of the incident light, and point R corresponds to the azimuth
of the compensator.

The left bottom trace is the projection onto plane 1F. Plane 1F is the frontal plane
perpendicular to radius RC. (Rather than projecting perpendicular to VH, it is projected
off the orthogonal direction CR and denoted as 1F.) In this plane, the true angle  of
the retardance can be seen, and from , point P2 for the emergent light is drawn in.
The corresponding point P2 in the horizontal plane can be obtained.

The Poincaré sphere is also projected onto the profile plane 1P, which is the side-
view plane perpendicular to both H and 1F planes. Point P2 in this plane is obtained
by extensions from the corresponding points in the H and 1F planes.

The essentials for finding ��, ˇ
 of the emergent light are now in place. Referring to
the projection of P2 onto the H plane, 2� D 30° can be read directly from the diagram.

The angle P2CP1 in the 1P plane is not the true 2ˇ angle. In order to see the true
angle, the sphere is rotated around the NS axis until P0

2C falls in a plane parallel to
the 1P plane. The height from the equator does not change by this rotation because the
axis of rotation is NS. The true angle is 2ˇ D 6 P0

2CP1 D 28°.
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The emergent wave is therefore a left-handed elliptically polarized wave with � D
15° and ��D tanˇ
 D 0.25.

Example 7.11 The retardance of a sample was measured by means of Senarmont’s
method in Section 6.4.3.3. The azimuth angle of the extinction axis (minor principal
transmission axis) of the analyzer was at � D 150°. Find the retardance using the
method of tracing onto the projected planes from the Poincaré sphere.

Solution As shown in Fig. 6.21 in the last chapter, Senarmont’s method determines
the retardance of a sample by measuring the ellipticity of the emergent light when
linearly polarized light is incident with its direction of polarization at 45° with respect
to the horizontally oriented fast axis of the sample. As already proved (Problem 6.11),
2ˇ of the emergent light equals the retardance . 2ˇ is measured by means of a �/4
plate with  D 45°. The light from the �/4 plate emerges as linearly polarized light
with � D 45° C ˇ. � is measured by means of an analyzer, and ˇ is determined.

The operation is shown on the Poincaré sphere in Fig. 7.30. P1 represents linearly
polarized incident light with � D 45°. The sample, whose fast axis is along the x axis,
rotates P1 centered around Rx by  to P2. Point P2 is further rotated by the �/4 plate
centered around R�� D 135°
 by 90° to P3, which represents a linearly polarized wave
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Figure 7.30 Senarmont’s method represented on the Poincaré sphere.

with � D 45° C ˇ. When the polarizer P is adjusted to � D 135° C ˇ, null output is
observed.

Now, the points on the Poincaré sphere in Fig. 7.30 will be transferred onto traces
in Fig. 7.31. Projections are made in the horizontal, frontal, and profile planes. The
trace in the profile plane shows the true retardance angle . P1 of the incident light
is rotated around Rx by the retardance  of the sample. Point P2 is further rotated by
the �/4 plate by 90° around R at � D 135° to reach point P3. The frontal projection
shows the true angle of the rotation from P2 to P3.

Point P of the azimuth of the analyzer for extinction is diametrically opposite to
point P3. The true angle of P is seen in the horizontal plane.

Now in order to obtain the value of  from a given value of P, one has to follow
the procedure backward. Keep in mind that the locations on the Poincaré sphere are
graduated from � D 0° to 180° and from ˇ D 0° to 45°. As was shown in Fig. 7.20,
the relevant angles on the projected planes are 2�, 2ˇ, and . The amount of  is not
doubled. A retardance of 90° is represented by a rotation of 90°.

Now, with the given value of P D 150°,  will be obtained. The point graduated
as  D 150° is labeled as P in the horizontal plane in Fig. 7.31. The graduation of the
diagonally opposite point P3 is 150° � 90° D 60°. If one goes from the horizontal plane
to the profile plane, angle 6 P1CP2 indicates that the desired retardance is  D 30°. �

The next example addresses (1) how to draw traces for a given state of polarization,
(2) how to manipulate the operation of a �/4 plate with an arbitrary orientation, and
(3) how to read off the true value of the state of polarization from the trace.

Example 7.12 Light with ��, �
 D �77°, 0.34
 is incident onto a �/4 plate whose fast
axis azimuth is  D 56°.
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(a) Find the state of polarization of the light emergent from the �/4 plate.
(b) The above wave is further transmitted through an analyzer. The azimuth angle

of the transmission axis of the analyzer is  D 15°. Find the value of ˛ and k
for the wave emergent from the analyzer.

Solution Dividing the procedure into separate steps makes it easier to follow.

Step 1. Represent the orientation of the fast axis of the �/4 plate.
Step 2. Represent the state of polarization of the incident light.
Step 3. Draw the operation of the �/4 plate.
Step 4. Read the value of ��, �
 from the traces.
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In this example, many subscripts are needed and new notations involving A, B,C, . . .
are introduced to represent the states of polarization, in place of P1, P2, P3, . . . used in
previous examples. For instance, the projections of point A in the horizontal, frontal,
and profile planes are designated as AH, AF, and AP.

Step 1. The azimuth of the fast axis is  D 56° and is represented by the point RHon
the equator in the horizontal plane. The true azimuth angle is seen in the horizontal
plane at 2 D 112°, as shown in Fig. 7.32a. The intersection between the projection
from RH and the equatorial line in the frontal plane determines point RF in the frontal
plane. Extensions from RH and RF determine RP in the profile plane.

Step 2. Figure 7.32b illustrates point A of the incident light with ˇ D tan�1 � D 19°

and � D 77°. In the frontal plane, the true latitude angle is seen. A straight horizontal
line with 2ˇ D 38° is the line for the graduation line of ˇ D 19°. In the horizontal
plane, the latitude 2ˇ sweeps out a circle of radius r. The longitude angle 2� is seen
in the horizontal plane, and the longitude of 2� D 154° represents the graduation line
of � D 77°. The intersection of the circle with radius r and the longitude determines
AH in the horizontal plane. The projection of AH onto the frontal plane intersects at
AF. Points AH and AF determine point AP in the profile plane.

Step 3. Figure 7.32c outlines the operation of the �/4 plate. An off-orthogonal
frontal plane 1F, which is perpendicular to CRH, is drawn. The �/4 plate rotates A1

to B1 by 90°, and AH moves perpendicular to CRH to BH in the horizontal plane. BF
in the frontal plane is obtained by the projection from BH and the height b in the 1F
plane, because the true height of B from the equator is seen both in the 1F plane and
the frontal plane. Point BP in the profile plane is determined from the projections of
BH and BF. Neither geodesic AFBF nor APBP is circular.

Step 4. The state of polarization of the emergent wave ��, �
 is read from point B.
The three-dimensional representation of point B is shown in the inset to Fig. 7.32b.
From the horizontal projection in Fig. 7.32c, the azimuth is 2� D 65° or � D 32.5°.

In order to find 2ˇ of B in the frontal plane in Fig. 7.32c, the sphere is rotated
around NS so that the true angle 6 B0

FCH in the frontal plane is 2ˇ D 32° or � D 0.29.
The output from the analyzer is found from the drawing in Fig. 7.32d. The value

of ˛ is 21.5°, and from Eq. (7.56), k D 0.87. �

7.8 MOVEMENT OF A POINT ON THE POINCARÉ SPHERE

In principle, any given state of polarization can be converted into any other state
of polarization by moving along lines of constant longitude and latitude. Hence, any
general movement along the Poincaré sphere [4] can be treated by decomposing the
movement into these two directions. Although this way of decomposition has a simple
conceptual appeal, it is not necessarily the simplest from the viewpoint of implemen-
tation.

7.8.1 Movement Along a Line of Constant Longitude (or Constant q Line)

As shown in Fig. 7.33, the state of polarization of an incident wave is represented by
P1 on the Poincaré sphere. P1 is to be moved along a line of constant longitude, which
can be accomplished with a compensator. When the azimuth  of the fast axis is set
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Figure 7.33 Moving the state of polarization along a line of constant longitude.

at 45° with respect to the azimuth � of the incident elliptic light, point P1 will move
up or down the constant � line as the retardance of the compensator is varied.

7.8.2 Movement Along a Line of Constant Latitude (or Constant b Line)

By using two half-waveplates, the state of polarization can be moved along a line
of constant latitude. Let the initial state of polarization be represented by P1 on the
Poincaré sphere shown in Fig. 7.34. The first �/2 plate rotates P1 around R1 by 180°

to P2. P2 has the same ellipticity as P1 but in the opposite direction of rotation with
different azimuth. The second half-waveplate further rotates P2 around R2 to P3. The
ellipticity and the sense of rotation of P3 are the same as that of the incident light
P1. Only the azimuth is changed from that of the incident light. If reversal of the
handedness is acceptable, a solitary half-waveplate will suffice.

The last example of this chapter [9] is a comprehensive one and will serve as a
good review of the material presented in Chapters 5, 6, and 7.

Example 7.13 Figure 7.35 shows the diagram of a TM–TE mode converter on a
lithium niobate wafer. The direction of polarization of the TM mode is vertical inside
a rectangular waveguide, as shown in Fig. 7.35, and that of the TE mode is horizontal
inside the waveguide. In order to convert the direction of polarization inside the waveg-
uide, a TM–TE mode converter is used. Chapters 9 and 10 are devoted to the topic
of optical waveguides. In particular, TM and TE modes are discussed in Section 9.3
and mode converters are discussed in Section 10.9.

The converter in Fig. 7.35 consists of conversion retarder regions, where an external
dc electric field is applied by the fingers of the interdigital electrodes, and modal
retarder regions, which are located in between the conversion retarder regions and
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Figure 7.35 TM–TE mode converter.

whose function is based on the difference in the propagation constants of the TE and
TM modes in the rectangular optical guide.

Use the Poincaré sphere to explain the principle of operation of the TM–TE mode
converter. Assume the input light is in the TM mode.

Solution The function of the conversion retarder and modal retarder will be described
separately, and then they will be combined to explain the principle of operation of the
TM–TE converter.
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(a) Let us first consider the conversion retarder. Interdigital electrodes are deposited
on a LiNbO3 wafer to create a periodic external dc field εx. The electric lines
of flux of the external field are periodic and parallel to the x axis. The external
E field εx rotates the indicatrix by � degrees (in the case of lithium niobate,
A < C and � in Eq. (5.32) becomes a negative quantity). The fast axis of the
conversion retarder is, therefore, at  D �/2 C � as shown in Fig. 7.36a. The
retardance i of each electrode with length l is

i D 2�N
kl �7.59


where N is the change in the index of refraction due to the application of
the external E field and k is the free space propagation constant. Each interdig-
ital electrode creates a small retardance, but as shown next, the retardance is
accumulated constructively and the incident point P1 moves from point V to H.

(b) The modal retarder refers to the region where no external electric field is present.
The propagation constants ˇTE and ˇTM for the TE and TM modes are quite
different due to both birefringence and geometry. Lithium niobate is birefringent,
and n0 > ne. The geometry of the cross section of the optical guide seen by the
TM and TE modes is different. These regions are considered as retarders with
their fast axis along the z direction ( D �/2). The length L of the modal retarder
is chosen such that the converted component constructively accumulates, as
given by the condition

�ˇTM � ˇTE
L D 2�n �7.60


where n is an integer.
(c) Finally, the principle of operation of the TM–TE converter will be explained

using the Poincaré sphere in Fig. 7.36b. The incident light in the TM mode
is represented by P1 located at point V. The fast axis of the finger retarder is
at  D �/2 C �, which is represented by point R on the Poincaré sphere. The
retardance of the first finger will rotate point P1 by 1 around R to P2. Then
the modal retarder region whose length is designed to provide 360° retardance
rotates point P2 by 360° around point V to P3. The second finger electrode
provides a retardance of 2 and moves point P3 to point P4. Point P4 is further
rotated by 360° by the modal retarder. The same process is repeated, and the
state of polarization moves toward H, or the direction of polarization of the TE
mode.

The retardance of the modal retarder must be close to 360°, otherwise the point
does not proceed toward H effectively. For instance, if the retardance of the first
modal retarder region were 180°, point P4 would have been at point P1 again after the
second finger electrode. �

This example looked at the specific case of converting V to H polarization on the
Poincaré sphere. Various other states of polarization are obtainable by adjusting the
external electric field and the length of the modal converter.
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PROBLEMS

7.1 The Poincaré sphere is useful for quickly finding an approximate answer in the
laboratory. Example 6.11 asked the calculation of the emergent wave from a �/4
plate with  D 45° when the incident wave is a right-handed elliptically polarized
wave with a D p

3 V/m and b D 1 V/m and � D 22.5°. Draw a diagram of the
operation on the Poincaré sphere.

7.2 (a) With the fast axis of a �/4 plate fixed along the x axis, use the Poincaré sphere
to obtain the emergent states of polarization for incident linearly polarized
waves with azimuth angles of � D 15°, 30°, and 45°.
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z y
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Figure P7.8 TE–TM converter on LiNbO3 wafer. (a) Bird’s eye view. (b) Profile view.
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(b) With the azimuth of the incident linearly polarized wave fixed along the x
axis, use the Poincaré sphere to obtain the states of polarization emergent
from a �/4 plate for three different azimuths of the fast axis at  D 15°, 30°,
and 45°.

7.3 The diagram in Fig. 6.35 illustrates how the glare from a radar screen is suppres-
sed by an antiglare circularly polarizing sheet. Indicate the state of polarization
of the light at each step of the explanation on the Poincaré sphere.

7.4 Problem 6.11 asked one to prove that when linearly polarized light with B/A D 1
is incident onto a retarder whose fast axis is along the x axis, 2ˇ of the emergent
light is equal to  of the retarder. Solve this problem using the Poincaré sphere.

7.5 Problem 6.2 asked for the state of polarization emergent from a retarder whose
fast axis is oriented along the x axis with  D 315° when linearly polarized
light is incident with � D 63.4°. Answer the same problem using Poincaré sphere
traces.

7.6 Use Poincaré sphere traces to find the state of polarization of the emergent
wave from a �/4 plate. The state of polarization of the incident light is
��, �
 D �100°, 0.5
 and the azimuth of the fast axis of the �/4 plate is  D 35°.

7.7 (a) Example 6.9 asked one to obtain � and � of the emergent light from a
retarder with  D 38° and its fast axis along the x axis. The incident light
was Ex D 2.0 V/m and Ey D 3.1 V/m. Verify the answer using the Poincaré
sphere trace.

(b) The above system is followed by an analyzer with its transmission axis along
the x axis. Find the emergent light power.

(c) Next, the transmission axis of the analyzer is rotated to  D 25°. Find the
new transmittance from the analyzer.

7.8 A TE–TM converter is shown in Fig. P7.8. The converter uses Y propagating
X-cut lithium niobate. The external field εx is vertical and bipolar. Explain the
operation of the mode converter on the Poincaré sphere. Assume the incident
light is in the TE mode.

7.9 One of the methods of laser cooling is polarization gradient cooling. This method
needs to create a spatial change of the state of polarization in the cooling laser

Laser

Vertically
polarized

Laser

Horizontally
polarized

P1 P2 P3 P4 P5 P6 P7

l/8

Figure P7.9 Polarization grating used for laser cooling.
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beam. Such a laser beam is created by two oppositely propagating laser beams.
Both laser beams are linearly polarized, but one is vertically polarized and the
other is horizontally polarized. Such laser beams establish a spatial variation of
the state of circular polarization, as shown in Fig. P7.9. Atoms moving along the
laser beam are slowed down by the interaction with the magnetic sublevels of
the ground state established by this circularly polarized laser beam [10]. Using
the Poincaré sphere, verify the establishment of such a polarization gradient in
the cooling laser beam.
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8

PHASE CONJUGATE OPTICS

This chapter deals with optical phase conjugation that can be generated in a medium
with third order nonlinear susceptibility. The path of the phase conjugate wave retraces
itself. This is analogous to playing a videotape backward, or in other words, a time-
reversed videotape. The chapter begins with an illustration of the striking differences
between an ordinary mirror and a phase conjugate mirror.

8.1 THE PHASE CONJUGATE MIRROR

The manner of reflection from a phase conjugate mirror is compared with that of a
plain, ordinary mirror in Fig. 8.1 [1]. With the ordinary mirror in Fig. 8.1a, the reflected
wave not only changes its direction in accordance with the orientation of the mirror, but
also keeps on diverging if the incident light is diverging. On the other hand, the wave
reflected from the phase conjugate mirror heads back to where it came from regardless
of the orientation of the mirror. Furthermore, if the incident wave is a diverging wave,
the reflected wave becomes a converging wave. The wave reflected from the phase
conjugate mirror is called a phase conjugate wave.

The phase conjugate wave formed by an ordinary hologram provides greater insight
into this phenomenon, as explained in the next section.

8.2 GENERATION OF A PHASE CONJUGATE WAVE USING A HOLOGRAM

A phase conjugate wave can be generated almost in real time if a special type of
nonlinear crystal or gas is used. Even though an ordinary hologram cannot operate in
real time, it is useful for explaining the principle of generating the phase conjugate
wave [2,3]. Figure 8.2 shows the geometry for recording a hologram using photo-
graphic film. Let O be the field emanating from a point object o onto the photographic
film, and R be the reference wave emanating from the reference point source r onto

504
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Figure 8.1 Difference between (a) a plain, ordinary mirror and (b) a phase conjugate mirror.

the same photographic film. The O and R waves form an interference fringe pattern.
The exposed and developed photographic film is filled with hyperbolic-shaped, silver-
grained, miniature mirrors as shown in Fig. 8.2. The transmittance of such a fringe
pattern was given in Eq. (1.261) as

t D t0 � ˇ[jRj2 C jOj2 C ORŁ C OŁR] �8.1	

When this hologram is illuminated by RŁ, the fourth term, ˇOŁR, in the square
bracket generates the phase conjugate wave jRj2OŁ. This is the shortest mathemat-
ical explanation of the generation of the phase conjugate wave OŁ. Here, however, a
graphical explanation is attempted because it can readily be used for explaining related
phenomena.

Referring back to Fig. 8.2, a new point light source r0 and a convex lens are arranged
such that its path retraces the original reference wave R from the opposite direction.
This light is RŁ, the complex conjugate of the original R (we see in Section 1.5.4 that
Eq. (1.162) is the complex conjugate of Eq. (1.161).), and the hologram is illuminated
by RŁ. The normals to the miniature mirrors are always oriented in the plane of the
bisector of the angle between the object O and reference R beams. For instance, the
surface of the small mirror at point c is in a plane that bisects 6 ocr made by oc and
cr, and thus, ˛ D ˛0 and RŁ is reflected toward the object point o.

In conclusion, RŁ (pump wave) from r0 generates a wave that traces back the object
wave O and converges to the source point. This wave is OŁ, the phase conjugate of the
O wave. The phase conjugate wave can be separated from the signal wave by means
of a half-mirror (HM). It would seem that the OŁ wave is the exact retrace of the O
wave but the photons of the OŁ wave come from the pump wave RŁ, and not from
the original point source o. The intensity of the reflected wave is controlled by the
efficiency of the small mirrors and the intensity of the pump wave RŁ. The intensity
of the phase conjugate wave OŁ can be even larger than that of the O wave and, as
such, serves as a useful way of amplifying the intensity.
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Figure 8.2 Phase conjugate wave generated by a hologram. HM is a half-mirror.

In the hologram in Fig. 8.2, the generation of the phase conjugate wave requires
the participation of the following three waves: the object wave O, the reference wave
R, and the reconstruction wave RŁ. Including the phase conjugate wave OŁ, a total of
four waves are involved — hence the term four-wave mixing (FWM). Discussions on
holography and phase conjugation generally use different terminology, as summarized
in Table 8.1.

Table 8.1 Comparison of terminology

Wave in Fig. 8.2 Holography Phase Conjugation

O Object wave Signal wave
R Reference wave First pump wave
RŁ Reconstruction wave Second pump wave
OŁ Phase conjugate of the object wave Phase conjugate wave
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In the present example, all the waves are at the same frequency, which is said to be
the degenerate case. In the nondegenerate case, a phase conjugate wave is generated
by mixing waves of different frequencies.

8.3 EXPRESSIONS FOR PHASE CONJUGATE WAVES

The expression for the phase conjugate wave will be explained taking a spherical wave
as an example. The expression for a diverging spherical wave is

Es�r, t	 D Re E�r, ω	e�jωt �8.2	

where

E�r, ω	 D A0

r
ejkrCj� �8.3	

and where A0 is a constant real number.
The phase conjugate wave Epc�r, t	 of this signal wave is obtained by performing

the conjugation operation on every term except the temporal term, namely,

Epc�r, t	 D Re [EŁ�r, ω	e�jωt] �8.4	

where

EŁ�r, ω	 D A0

r
e�jkr�j� �8.5	

The term e�jkr/r indicates a converging spherical wave (see Section 1.5.4). The phase
conjugation converts a diverging spherical wave into a converging spherical wave, and
vice versa.

The phase conjugate wave is sometimes called a time-reversed wave. If the sign of
the temporal term in Eq. (8.2) is reversed, that is, t ! �t, then

Epc�r, t	 D Re
(
A0

r
ejωtCjkrCj�

)
�8.6	

which is identical to Epc�r, t	 given by Eq. (8.4). This means that Epc�r, t	 is obtained
by reversing the time. Epc�r, t	 is like a motion picture played backward.

It is important to understand the meaning of �. Let us compare the phases between
two diverging spherical waves with and without �. From Eqs. (8.2) and (8.3), these
spherical waves are given by

Es�r, t	 D Re
(
A0

r
e�jωtCjkrCj�

)
�8.7	

Ed�r, t	 D Re
(
A0

r
e�jωtCjkr

)
�8.8	

The waves are observed at a particular radius r D r0. The phase of Es�r, t	 at t D t is
identical to the phase of Ed�r, t	 at t D t � �/ω. This means that the phase of Es�r, t	
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Ordinary reflection

Phase conjugate reflection

Comparison of ordinary reflection and phase conjugate reflection.

is equal to the phase that Ed�r, t	 had �/ω seconds earlier. Thus, � means that the
phase of Es�r, t	 is delayed from that of Ed�r, t	 by � radians.

On the other hand, when the phase conjugate waves with and without � are com-
pared, the corresponding expressions are

Epc�r, t	 D Re
(
A0

r
e�jωt�jkr�j�

)
�8.9	

Ec�r, t	 D Re
(
A0

r
e�jωt�jkr

)
�8.10	

The phase of Epc�r, t	 at t D t is equal to the phase that Ec�r, t	 will have at t D
t C �/ω. Hence, � means that the phase of Epc�r, t	 is leading by � radians.

In conclusion, the phase conjugate wave propagates in the reverse direction of the
signal wave. The phase is also reversed and if the phase of the signal wave is delayed
by � radians, then that of the phase conjugate wave is leading by � radians. This is
just like a train reversing its direction. The trailing coach becomes the leading coach
if the phase is compared to the location of the coach.

8.4 PHASE CONJUGATE MIRROR FOR RECOVERING
PHASEFRONT DISTORTION

One of the most important applications of the phase conjugate mirror is for eliminating
wavefront distortion incurred during light transmission through a turbulent atmosphere
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or dispersive optical fiber. The holographic principle will be used for explaining the
recovery of the wavefront free from distortion.

First, the amount of fringe pattern shift due to the phase shift of the incident wave
will be calculated. Figure 8.3a shows the fringe pattern formed by two counterpropa-
gating plane waves:

E1 D A1e
�jωtCjkz �8.11	

E2 D A2e
�jωt�jkz �8.12	

If the amplitudes are equal, A1 D A2 D A, then the sum of E1 C E2 can be expressed
as

E1 C E2 D 2Ae�jωt cos kz �8.13	

The intensity peaks of Eq. (8.13) appear at every half-wavelength, as shown by the
solid lines in Fig. 8.3a. Let us focus our attention on the particular peak at the center
z D 0 in order to find how much the peak moves when one of the two waves shifts its
phase. Let us say the phase of the forward wave E1 is delayed by � radians, and

E0
1 D A1e

�jωtCjkzCj� �8.14	

The interference pattern between E0
1 and E2 then becomes

E0
1 C E2 D 2Ae�jωtCj�/2 cos�kz C �/2	 �8.15	

Peaks appear when the value inside the parentheses in Eq. (8.15) is zero, and the new
location of the center peak is at

z D �1

k

�

2
�8.16	

As a matter of fact, all peaks shift by z toward the left or toward the source of
the delayed incident wave, as indicated by the dashed lines in Fig. 8.3a. This shift
of the fringe pattern plays an important role in recovering the wavefront free from
distortion.

Figure 8.3b explains how the wavefront disrupted by passing through a distorting
medium is restored by means of the phase conjugate mirror. Let us say a plane wave
whose wavefront is represented by the solid line in Fig. 8.3b(i) is incident from the
left to the right. A rectangular shaped distorting medium whose refractive index is
larger than that of the surrounding medium is placed in the way. The portion of the
wavefront that has passed through the distorting medium is delayed, and the shape of
the wavefront upon leaving the distorting medium becomes indented and resembles
the letter C, as indicated by the solid line in Fig. 8.3b(ii). A hologram is generated
from this distorted wavefront O and the reference wave R originating from point r.
The recorded fringes in the hologram have protrusions shaped like the letter C in their
pattern. The direction of the protrusion is toward the source of the incident wave as
explained using Fig. 8.3a.

Next, consider the case when this hologram is illuminated by the pump wave
RŁ from the point source r0. Compare the ray that is reflected from the protruding
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Figure 8.3 A phase conjugate wave is restored from the influence of a phase-distorting medium.
(a) Fringe pattern formed by two counterpropagating plane waves. (b) Explanation of how the wavefront
disrupted by passing through a distorting medium is restored by means of the phase conjugate mirror.

section of the small mirror and the ray reflected from the nonprotruding section.
Not only does the ray reflected from the protruding section reach the mirror sooner,
but also the point of reflection is shifted toward the left, and the wavefront OŁ
reflected from the hologram has a C-shaped dent as indicated by the dashed line
in Fig. 8.3b(iii).

The shapes of the indentation in the O wave in Fig. 8.3b(ii) and the OŁ wave in
Fig. 8.3b(iii) are the same, but the difference is in their direction of propagation. They
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Figure 8.4 Recovery of the original parallel beam from a disturbed beam by means of a phase
conjugate mirror. , Signal beam. - - - - , Phase conjugate beam.

are propagating in opposite directions, and the indented part of the O wave is delayed,
but that of the OŁ wave is in the lead.

If the OŁ wave continues to propagate to the left and passes through the same
distorting medium again, only the distorted portion of the wavefront is delayed, and
the wavefront of the emerging wave recovers from the distortion, as indicated by the
dashed line in Fig. 8.3b(iv).

Next, let us consider the more general case where the distorting medium has an
irregular shape, as shown in Fig. 8.4. The particular ray path abcd is examined. At
point d, the nature of the phase conjugate mirror directs the reflected wave exactly
toward the direction from which it came. Once this direction of the retrace is set at
point d, the rest of the paths are solely determined by Snell’s refraction law. Snell’s
law is reciprocal, which means that regardless of whether the ray goes from left to right
or right to left, it takes the same path. Thus, the reflected ray takes the path of dcba,
which is exactly the reversal of abcd, and the reflected wave becomes an undistorted
parallel beam.

8.5 PHASE CONJUGATION IN REAL TIME

In the previous sections, in order to explain the method of generating a phase conjugate
wave, a photographic film was used as the recording medium. For most applications,
however, it is unrealistic to wait for the film to be developed. For real-time operation,
the film has to be replaced by a more suitable recording medium. Third order nonlinear
media are used. The refractive indices of such media change in real time when exposed
to light [3,4].

The most commonly used materials are photorefractive crystals such as BaTiO3,
LiNbO3, LiTaO3, and Bi12SiO20 (BSO). These photorefractive crystals have a large
nonlinear susceptibility, and the values of �eff are in the range of 10�20 –10�23�V/m	2.
The light intensity required to produce a noticeable effect can be as small as 1 mW/cm2,
which means lasers with output powers of the order of tens of milliwatts will suffice.
The drawback with these crystals is the slow response time, which ranges from a few
seconds to hours.
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Nonlinear Kerr media such as glass, calcite, YAG, sapphire, benzene, liquid crystal,
and semiconductors are an alternative to photorefractive crystals. Semiconductors like
chromium-doped gallium arsenide (GaAs:Cr), iron-doped indium phosphide (InP:Fe),
or titanium-doped indium phosphide (InP:Ti) change their energy band gap when illu-
minated by high-intensity light and hence change their refractive index. Their nonlinear
susceptibility is low and �eff D 10�22 –10�32�V/m	2, but the response time is as fast
as 10�8 –10�12 seconds.

Yet another possibility are materials that display either stimulated Brillouin scat-
tering (SBS) or stimulated Raman scattering (SRS). Examples of such materials are
gaseous methane �CH4	, carbon dioxide �CO2	, liquid carbon disulfide �CS2	, alcohol
�C2H5OOH	, and glass. The magnitude of �eff is 10�32 –10�34�V/m	2 and the response
time is 10�8 –10�9 seconds.

8.6 PICTURE PROCESSING BY MEANS OF A PHASE
CONJUGATE MIRROR

If the distorting medium in Fig. 8.3b is replaced by an inhomogeneous medium such as
turbulent air, the system in Fig. 8.3b can be used immediately for correcting a distorted
image.

Figure 8.5 shows an arrangement for compensating for the distortion caused by
transmission of the signal light through an in homogeneous medium. Referring to
Fig. 8.5, a light source illuminates the input mask, and the signal light from the input
mask undergoes distortion as it passes through the turbulent air. The distorted signal
is incident onto the phase conjugate mirror. The signal light reflected from the phase
conjugate mirror reverses the sign of its phase. By going through the same inhomoge-
neous medium a second time, the distortion in the reversed phase is exactly canceled.
The corrected wavefront reaches the image plane by way of the half-mirror. The loca-
tion of the image plane is set such that the total distance between the input mask to
the phase conjugate mirror is identical to that between the phase conjugate mirror and
the image plane.

Input mask Half-mirror

Turbulant air

Image plane

S

Phase conjugate
mirror

Figure 8.5 Arrangement designed to compensate for the wavefront distortion incurred during trans-
mission through turbulent air.
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(a) (b)

Figure 8.6 Image restoration by means of a phase conjugate mirror. (a) Image through a distorted
sheet of glass. (b) Image restored by means of a phase conjugate mirror. (Courtesy of J. Feinberg [5].)

It is important to realize that the wavefront has to retrace the same inhomogeneity.
For this to be true, the air turbulence has to be stationary for the duration of the round
trip of the signal light through the air turbulence.

Figure 8.6 shows the result of an experiment to demonstrate the effectiveness of
compensation using such an arrangement as shown in Fig. 8.5 [5,6]. A sheet of surface-
distorted glass was used instead of turbulent air. Figure 8.6a shows the image obtained
using an ordinary mirror in place of the phase conjugate mirror. Figure 8.6b shows the
restored image of the cat obtained using the phase conjugate mirror.

The arrangement shown in Fig. 8.5 has another application. By removing the inho-
mogeneous medium it can be used as a photolithography machine. The image of the
input mask can be projected onto a substrate in the image plane. The system not only
does away with imaging lenses but also avoids direct contact of the input mask with
the substrate.

8.7 DISTORTION-FREE AMPLIFICATION OF LASER LIGHT BY MEANS OF
A PHASE CONJUGATE MIRROR

The same principle for compensating distortion caused by inhomogeneity in Fig. 8.5
can be used to construct a light amplifier whose output light is free from distortion [7].
Problems of inhomogeneity normally occur within a high-power semiconductor laser
amplifier. This can be compensated using the arrangement shown in Fig. 8.7, which is
nothing but a modification of Fig. 8.5.

Figure 8.7a shows a semiconductor laser without compensation. The inhomogeneity
of the amplifier generates wavefront distortion in the output light. In Fig. 8.7b, a phase
conjugate mirror is placed in the amplified output light. The reflected phase conjugate
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Figure 8.7 Compensation of distortion with phase conjugate (PC) mirror. (a) Amplification of light
with distortion. (b) Amplification of light without distortion.

wave retraces through the inhomogeneity in the amplifier and takes the path of the
original laser beam without distortion. The distortion-free amplified output exits by
way of the half-mirror.

8.8 SELF-TRACKING OF A LASER BEAM

By nature, the phase conjugate wave retraces the path to the original source. Making
use of this property, optical tracking or self-targeting systems can be realized [1,7].

Figures 8.8 –8.10 show examples of such systems.
Figure 8.8 shows an arrangement for directing a high-intensity laser beam to a point

target. The target is illuminated by a laser. A portion of the light scattered by the target
is intercepted by the optical amplifier and is amplified. The amplified output is incident
onto the phase conjugate mirror. The reflected phase conjugate wave enters the optical
amplifier again. The output from the amplifier is not only amplified twice but also
converges to the point target. In Fig. 8.9, several self-targeting systems are combined
to achieve super-high-intensity light concentrated on a single target with the goal of
initiating thermal fusion of the pellet target. As long as the depth of the phase conjugate
mirror is longer than the longest path differences among the targeting systems, the
pulses from each system coincide at the pellet target and provide super-high-intensity
light to the target.

Figure 8.10 shows another example of a tracking system [8]. This time, however,
the arrangement is slightly different. Site A sends out a pilot light S through a turbulent
medium to Site B. The pilot light contains information about the turbulence. At Site B,
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Figure 8.8 Optical self-targeting by means of a phase conjugate (PC) mirror. (After V. V. Shkunov
and B. Ya Zel’dovich [7].)

Mirror Mirror

Diverging
waves

Converging
waves

Pellet

Laser 
pulse 

Pulsed
laser

Semiconductor laser amplifiers 
with distortion 

PC mirror

Shallower

Deeper

Figure 8.9 Synchronized pulses from parallel amplifiers. (After D. M. Pepper [3].)
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Figure 8.10 Tracking source with one-way transmission through turbulance. (After B. Fischer
et al. [8].)

the pilot light is mixed with the pump wave P1 to form a holographic fringe pattern
in a photorefractive crystal.

The information signal, a picture of the letter A, is to be sent back from Site B,
passing through the same turbulent medium to Site A. Pump beam P2 propagating in
the opposite direction from P1 illuminates the input mask of the letter A and then illu-
minates the holographic fringes. The wave SŁ diffracted from the holographic fringes is
the phase conjugate wave of the source wave S that has come through the turbulence.
SŁ goes through the turbulence and the original wavefront is recovered and propagates
toward Site A. The letter A will be imaged at Site A.

In the previous arrangements, the signal wave had to go through the turbulence
twice, but what is unique about the present arrangement is that the signal wave goes
through the turbulence once and the pump wave goes through once. It is a more
practical configuration for transmitting information over a distance.

An interesting modification is that if the mask of the letter A is replaced by a fast-
speed electronic shutter, then pump wave P2 is temporally modulated and a free-space
optical communication link immune to turbulence is established.
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Another application of the self-tracking capability of the phase conjugate wave is the
adaptive fiber coupler. The adaptive fiber coupler is a coupler that does not need critical
alignment between the two connecting fibers [9]. Figure 8.11a shows the geometry of
the coupling. A photorefractive crystal such as barium titanate �BaTiO3	 is placed
inside an optical resonator formed by a pair of ordinary mirrors. Mirror M1 is placed
on one side of the crystal. A partially reflecting mirror M2 has been deposited on the
facet of fiber 2. M2 is arranged to be parallel to M1 so as to form an optical resonator.
Light incident from fiber 1 is scattered by impurities in the crystal. The lightwave
scattered in the direction perpendicular to mirrors M1 and M2 bounces back and forth
between M1 and M2. Let the wave going horizontally from left to right be the pump
wave P1 and that going from right to left be pump wave P2.

Fringes

P2P1

M1 M2

Fiber 2

(a)

c

P2P1
M2

Fiber 2
c

F1

Fiber 1

(b)

F1

Fiber 1

Figure 8.11 Adaptive fiber coupler. (a) Coupling between fibers 1 and 2. (b) When fiber 1 is moved,
coupling adaptively continues.
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Note that there is no external pump wave in this configuration. There is a special reason
for using the photorefractive crystal as the phase conjugate element. For instance, when a
nonlinear Kerr medium such as calcite is used, the recorded fringe pattern is an exact replica
of the interference pattern of the incident lightwaves. However, when a photorefractive
medium like BaTiO3 is used, the recorded fringe pattern is shifted from that of the interference
pattern of the incident lightwaves because, as mentioned in Section 5.7.2, the change in
refractive index is proportional to the spatial derivative of the light intensity rather than the
light intensity itself. Because of this fringe pattern shift, when two beams of equal intensity
cross in a photorefractive medium as shown in Fig. 8.12a, the two outputs are uneven and
the power at d is larger than at b. The energy is pulled toward the direction of the crystal
axis c of the crystal. This is called the two-wave mixing gain of a photorefractive material.

With the configuration shown in Fig. 8.11, the light energy is preferentially bent toward
M2. This method of generating a conjugate wave without external pump waves is called
self-pumped phase conjugation (SPPC).

Figures 8.12b and 8.12c show a few more SPPC configurations of the conjugate mirrors.
In Fig. 8.12b, the walls of the crystal replace the external mirrors. Figure 8.12c makes use of
total internal reflection at the crystal walls [10,11]. The SPPC configurations have significant
practical value.

c

Equal power

a

c

c

c

d

b
Lower power

Higher power

(a)

(b)

(c)

Ep1

Ep1

Es

Ec

Ep2

Ep2

EcEs

Figure 8.12 Self-pumped phase conjugation. (a) The direction of the energy transfer. (b) SPPC
without external cavity. (c) SPPC with total internal reflection.
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The incident light F1 from fiber 1 and pump wave P1 start forming holographic
fringes. The direction of the fringes is such that the incident wave F1 from fiber 1 is
directed toward the input facet of fiber 2 and the connection is made between fibers 1
and 2.

If a misalignment of fiber 1 takes place, as shown in Fig. 8.11b, the direction of the
fringe pattern in the crystal rotates such that F1 is still reflected toward fiber 2. There
is, however, a decrease in the energy transfer into the optical resonator. As the bisect
between F1 and P1 moves away from the crystal axis, the diffraction efficiency from
the photorefractive crystal decreases.

It should be noted that no external pump light is necessary in this coupler. The
light F1 from fiber 1 is transferred to the pump waves, and light energy pours into the
optical resonator from the light F1 of fiber 1.

8.9 PICTURE PROCESSING

By combining a pair of phase conjugate mirrors and a multiexposed hologram, an
associative memory system such as shown in Fig. 8.13 can be constructed. The system
can identify which one of a collection of memorized pictures best fits the interrogating
obscure picture [12].

Let us say that the memorized pictures are of a cat, a dog, and a monkey. In
memorizing these animal pictures, the angle of incidence of the reference beam is
changed each time the input picture is exposed to the photographic film. Let us say
the incident angle of reference beam R1 used for recording the cat O1 is at 10° from
the normal to the photographic film. Reference beam R2 used for recording the dog
O2 is at 20°, and reference beam R3 used for the monkey O3 is at 30°. After all three
exposures are completed, the photographic film is developed and placed in the system
shown in Fig. 8.13b.

The operation of the system will be explained with a picture of a cat as the inter-
rogating picture. The transmittance t of the multiexposed hologram is

t D ˇ
3∑
iD1

�Ri C Oi	�R
Ł
i C OŁ

i 	

D ˇ
3∑
iD1

�jRij2 C jOij2 C RŁ
i Oi C RiO

Ł
i 	 �8.17	

where ˇ is a constant characterizing the photographic film. Only the fourth term,

t4 D ˇ
3∑
iD1

RiO
Ł
i �8.18	

is of concern. When the hologram is illuminated by the light pattern O1 of the cat, the
output light from the hologram is

t4O1 D ˇ�R1O
Ł
1O1 C R2O

Ł
2O1 C R3O

Ł
3O1	 �8.19	
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Figure 8.13 Associative memory system. (a) Multi-exposed hologram. Three exposures are made
on the same hologram. At each exposure, the direction of the reference beam is changed. (After
D. M. Pepper [3].) (b) Interrogation of the input image. (c) With a portion of the portrait as the input,
the image of the entire face is recovered. (Courtesy of Y. Owechko et al. [12].)
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The first term predominates in Eq. (8.19), because not only do the amplitude distri-
butions of O1 and OŁ

1 match, but also the phase angle of OŁ
1O1 is constant (zero)

throughout the pattern. The output t4O1 from the hologram is essentially R1 with
reduced intensity.

Beam R1 emergent from the hologram is now reflected by the right-hand-side phase
conjugate mirror and the reflected beam becomes RŁ

1. The hologram is now reillumi-
nated by RŁ

1. The contribution of the fourth term in Eq. (8.17) to the light transmitted
through the hologram is

t4R
Ł
1 D ˇ�OŁ

1R1R
Ł
1 C OŁ

2R2R
Ł
1 C OŁ

3R3R
Ł
1	 �8.20	

The contribution of the first term of Eq. (8.20) is predominant because the phase angle
of R1RŁ

1 is exactly zero, while that of R2RŁ
1 is 10° and that of R3RŁ

1 is 20° and propagates
off axis. The emergent beam from the hologram becomes OŁ

1.
OŁ

1 is further converted into O1 by the phase conjugate mirror on the left-hand side
and finally reaches the output image plane by way of the half-mirror HM2. The image
of the cat is formed by means of the imaging lens L2. The beam that passes through the
half-mirror HM2 will repeat the same process to enhance the sensitivity of the system.

The sensitivity of the system can be improved significantly if a photographic film
with a thick emulsion is used for fabricating the hologram. The sensitivity of the
brightness of the reconstructed image to the angle of incidence of the reconstructing
beam is enhanced due to the increased sizes of the miniature mirrors in the fringe
pattern in the emulsion [2]. In fact, if the photographic film is replaced by a volume
holographic material such as a BaTiO3 crystal, a significant improvement in sensitivity
and flexibility is achieved.

The power of discrimination can be adjusted by the threshold level of the phase
conjugate mirror, and even a picture of the cat’s brother or a faded imperfect input
image can still be interrogated. Such a system is useful for interrogating handwritten
letters or for fingerprint detection.

Figure 8.13c gives a similar demonstration for a portrait. Using only a portion of
the portrait as input, the entire portrait is generated as a result of the interrogation.

8.10 THEORY OF PHASE CONJUGATE OPTICS

The theory of phase conjugate optics will be presented. Even though the level of
treatment is elementary, it is still useful for solving practical problems.

8.10.1 Maxwell’s Equations in a Nonlinear Medium

Maxwell’s equations are the starting point for the quantitative representation of nonli-
near phenomena [13–19]. Maxwell’s equations are repeated here for convenience:

W× E D �∂B
∂t

�8.21	

W× H D J C ∂D
∂t

�8.22	

W · D D " �8.23	

W · B D 0 �8.24	
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where

D D #0E C P �8.25	

B D $0H C M �8.26	

P is the induced electric polarization and is the focus of attention in this chapter. The
medium is assumed to be nonconducting and nonmagnetic. This assumption leads to

J D " D M D 0 �8.27	

From Eqs. (8.21), (8.22), (8.25), and (8.27), the following expression is obtained:

W× W× E C 1

c2

∂2E
∂t2

D �$0
∂2P
∂t2

�8.28	

where c2 D �#0$0	�1. The identities involving differential operators that will be used
to simplify Eq. (8.28) are

W× W× E D W.W · E/ � W2E �8.29	

W · D D E · W#C #W · E �8.30	

If the spatial variation W# is negligible, then Eqs. (8.23), (8.27), and (8.30), lead to

W · E D 0 �8.31	

With Eqs. (8.29) and (8.31), Eq. (8.28) becomes

W2E � 1

c2

∂2E
∂t2

D $0
∂2P
∂t2

�8.32	

Equation (8.32) can be interpreted as the wave equation of E whose source of excitation
is $0∂2P/∂t2. However, the electric polarization P is induced by E; and P is

P D #0�c
�1	 Ð E C c�2	 : EE C c�3	

...EEE C Ð Ð Ð	 �8.33	

The first term in Eq. (8.33) is proportional to E, while the rest of the terms are propor-
tional to higher orders of E. The former is called the linear part PL; and the latter, the
nonlinear part PNL of the induced electric polarization

P D PL C PNL �8.34	

where

PL D #0c�1	 Ð E �8.35	

PNL D #0�c
�2	 : EE C c�3	

...EEE C Ð Ð Ð	 �8.36	

c�i	 is the ith order optical susceptibility and is a tensor of rank iC 1. A nonlinear
dielectric medium is characterized by PNL.
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Assuming a sinusoidal time dependence and substituting for PL from Eq. (8.35) and
PNL from Eq. (8.36), the wave equation Eq. (8.32) becomes

W2E C
(ω
c

)2
E D �$0#0ω

2c�1	 Ð E C $0
∂2PNL

∂t2
�8.37	

Noting that

εr D 1 C c�1	 �8.38	

Eq. (8.37) can be rewritten as

W2E C k2
0εr Ð E D $0

∂2PNL

∂t2
�8.39	

with

k2
0 D ω2$0#0 �8.40	

8.10.2 Nonlinear Optical Susceptibilities c.2/ and c.3/

Susceptibilities with i larger than 3 are hardly used, so that only the properties of ��2	

and ��3	 are investigated here. Certain materials such as glass or NaCl have zero ��2	

but have nonzero ��3	. For experiments to be performed based solely on ��3	, such
materials are attractive because there are no second order nonlinearities, which might
complicate the results. A slight detour will be taken to explain why some materials
have zero ��2	 but nonzero ��3	.

First of all, for simplicity, let us choose

E D �E cosωt	Ox �8.41	

Since only the Ox component is considered, Eq. (8.41) can be treated as a scalar quantity.
The second nonlinearity gives

P�2	NL D 1
2�

�2	E2�1 C cos 2ωt	 �8.42	

and becomes the expression for second harmonic generation (SHG). On the other hand,
the third nonlinearity gives

P�3	NL D 1
4�

�3	E3�3 cosωt C cos 3ωt	 �8.43	

and generates the third order higher harmonic.
Generation of the higher harmonics will be examined graphically in order to find out

why crystals with inversion symmetry do not display the second order nonlinearity [19].
Figure 8.14a shows a one-dimensional model of a crystal with inversion symmetry.

It possesses an inversion symmetry with respect to any one of the ions. Let us say that
with respect to the c axis ý and � charges are symmetrically distributed. Consider an
instant that the electric field E of the light is in the positive x direction. The positive
charges move to the right, and the negative charges move to the left, as shown in
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Figure 8.14 Induced electrical polarization in a crystal with inversion symmetry. (a) No light E D 0.
(b) Light is on with E D E Ox. (c) Light is on with E D �E Ox.

Fig. 8.14b. At the next instant, the direction of E is reversed, and each charge moves
in the opposite direction and the distribution of the charges becomes like the one shown
in Fig. 8.14c. The distribution of the charges that E sees is the same for both instances,
and the amounts of polarization are the same, except for the reversal of the outermost
charges that determine the polarization polarity.

Figure 8.15a shows a plot of PNL with respect to time. Even though the shape is
distorted from a sinusoidal curve due to the nonlinearity, the shape of the curve for
positive values of polarization in the range 0 < t < T/2 is identical to that for negative
values of polarization in the range T/2 < t < T except for its sign, where T is the
period of the fundamental frequency.

If the second harmonic is present, the shapes in the first half and the second half
cannot be identical, as will be illustrated using Fig. 8.15b in which the curves of the
fundamental and the second harmonic are plotted. In the region 0 < t < T/2, the signs
of the peaks of the fundamental and second harmonic are both positive; while in the
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Figure 8.15 Graphical illustration that a crystal with inversion symmetry has zero ��2	.

region T/2 < t < T, the peaks of the fundamental and second harmonic have opposite
signs. As long as the second harmonic is added to the fundamental, the response
curve cannot have the same shape in the regions 0 < t < T/2 and T/2 < t < T, as
shown in Fig. 8.15a for a crystal with inverse symmetry. Thus, the second order optical
susceptibility ��2	 has to be zero in a crystal with inversion symmetry.

The same crystal, however, can have a third order nonlinearity. Figure 8.15c shows
the plot of the fundamental and the third harmonic. In the region 0 < t < T/2, the
center peak of the third harmonic is negative while that of the fundamental is positive.
The resultant is the difference between these two peaks. In the region T/2 < t < T, the
center peak of the third harmonic is positive while that of the fundamental is negative.
The resultant is again the difference between the two peaks, and the shape in the region
0 < t < T/2 becomes identical to that in T/2 < t < T. Thus, a crystal with inversion
symmetry can support the third order nonlinearity.
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In summary, a crystal with inversion symmetry cannot support the second order
nonlinearity but can support the third order nonlinearity. Crystals that do not possess
inversion symmetry can, in principle, support simultaneously second and third order
nonlinearities.

In the next section, we return to solving the nonlinear Maxwell’s equation.

8.10.3 Coupled Wave Equations

The first step toward solving the nonlinear Maxwell’s equation, Eq. (8.39), is to find
an expression for PNL in Eq. (8.39). In the general case of four-wave mixing, PNL is
generated from a combination of four incident waves of different frequencies.

The analytic signal is one of the most common ways of solving differential equations
in electrical engineering. A sinusoidal function, say, cosωt, is replaced by the expo-
nential ejωt and the differential equations are solved. The final answer is obtained by
taking only the real part of the solution. This method does not necessarily work for
solving problems in nonlinear optics; therefore, cosωt D 1

2 �e
jωt C c.c.	 will be used.

See the boxed note and Appendix B of Volume 1.
All incident waves are assumed to be plane waves and are made up of four waves:

E�r, t	 D
4∑
jD1

OajjAj�r, ωj	j cos��ωjt C kj Ð r C �j	 �8.44	

where Oaj are the unit vectors of the direction of polarization. The exponential expression
that is exactly equivalent to Eq. (8.44) is

E�r, t	 D 1

2

4∑
jD1

Oaj[Ej�r, ωj	e�jωjt C c.c.] �8.45	

where

Ej�r, ωj	 D Aj�r, ωj	ejkj.r �8.46	

Aj�r, ωj	 D jAj�r, ωj	jej�j �8.47	

or simply

Ej D Ej�r, ωj	

Aj D Aj�r, ωj	
�8.48	

For instance, it is well known that if two signals with frequencies ω1 and ω2 are put
into a nonlinear element, the output contains both the upper beat frequency ω1 C ω2 and the
lower beat frequency ω1 � ω2. If the analytic signal method is used for this case,

Re �ejω1t C ejω2t	2 D cos 2ω1t C cos 2ω2t C cos�ω1 C ω2	t

the lower beat frequency component is missing. A more detailed explanation can be found
in Appendix B of Volume 1.
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Similarly, the induced electric polarization is expressed as

PNL�r, t	 D 1/2
4∑
jD1

Obj[PNLj �r, ωj	e
�jωjt C c.c.] �8.49	

PNLj �r, ωj	 D Bj�r, ωj	ejkjÐr �8.50	

or simply

PNLj D PNLj �r, ωj	 �8.51	

Next, the actual values of PNL will be calculated for a Kerr medium whose suscep-
tibility is predominantly the third order ��3	.

PNL D #0c�3	
...EEE �8.52	

We assume that all E’s are nothing but the waves polarized in the x direction. E,
however, consists of waves of four different frequencies, ω1, ω2, ω3, and ω4. All four
frequencies are assumed to be in the same frequency range, say, in the visible or
infrared region. Their propagation directions and wavelengths are specified by the
complex propagation constants k1, k2,k3, and k4.

Inserting Eq. (8.45) into (8.52) gives

PNL D Ox#0�xxxx
8

�E1e
�jω1t C EŁ

1e
jω1t C E2e

�jω2t C EŁ
2e
jω2t

C E3e
�jω3t C EŁ

3e
jω3t C E4e

�jω4t C EŁ
4e
jω4t	3 �8.53	

As far as the subscript of �xxxx is concerned, the first subscript indicates the direction
of polarization of the wave emergent from the nonlinear medium and the next three
subscripts indicate the directions of polarization of the incident waves. In the present
case, all are assumed in the Ox direction. Manipulation of the cubic in Eq. (8.53) no
doubt generates many beat frequencies. The manipulation is shown in Appendix C.
We assume that frequencies associated with the third power, such as 3ω1, 3ω2, ω1 C
ω2 C ω4, and 2ω2 C ω1, are all out of the range of interest and are discarded, but
all other terms are kept. Terms with frequencies such as ω1 C ω2 � ω3, ω1 C ω2 � ω4

or 2ω2 � ω3 are of particular interest because they are all in the visible and infrared
region.

In order that a significant exchange of energy take place among the frequency
components, the generated beat frequency components have to be recycled to partici-
pate over and over again in the beating process. For instance, the beating among ω2, ω3

and ω4 creates the original frequency ω1 if the condition

ω1 D ω3 C ω4 � ω2 �8.54	

is satisfied. This ω1 frequency component again participates in the beating and creates
component ω2 in accordance with Eq. (8.54), that is, ω2 D ω3 C ω4 � ω1. These cyclic
conversions among the four frequencies are essential for four-wave mixing. If Eq. (8.54)
is satisfied, the four frequencies are said to be commensurate. Among the terms in
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Appendix C of Volume 1, the following is the set of equations that are commensurate
with each other [18].

PNL D 1
2 Ox[PNL�ω1	e

�jω1t C PNL�ω2	e
�jω2t

C PNL�ω3	e
�jω3t C PNL�ω4	e

�jω4t C c.c.] �8.55	

PNL�ω1	 D �eff�Q1E1 C 2E3E4E
Ł
2	 �8.56	

PNL�ω2	 D �eff�Q2E2 C 2E3E4E
Ł
1	 �8.57	

PNL�ω3	 D �eff�Q3E3 C 2E1E2E
Ł
4	 �8.58	

PNL�ω4	 D �eff�Q4E4 C 2E1E2E
Ł
3	 �8.59	

where

Q1 D Q� jE1j2 �8.60	

Q2 D Q� jE2j2 �8.61	

Q3 D Q� jE3j2 �8.62	

Q4 D Q� jE4j2 �8.63	

Q D 2�jE1j2 C jE2j2 C jE3j2 C jE4j2	 �8.64	

�eff D 3#0

4
�xxxx �8.65	

Four frequency components are separately associated with the nonlinear wave
equation, Eq. (8.39). PNL�ω1	 is the source of excitation of E1, and PNL�ω2	 is the
source of excitation of E2, and so on. From Eq. (8.39) and Eqs. (8.56)–(8.59), the
following simultaneous differential equations are generated:

�r2 C k2
1	E1 D �$0ω

2
1�eff�Q1E1 C 2E3E4E

Ł
2	 �8.66	

�r2 C k2
2	E2 D �$0ω

2
2�eff�Q2E2 C 2E3E4E

Ł
1	 �8.67	

�r2 C k2
3	E3 D �$0ω

2
3�eff�Q3E3 C 2E1E2E

Ł
4	 �8.68	

�r2 C k2
4	E4 D �$0ω

2
4�eff�Q4E4 C 2E1E2E

Ł
3	 �8.69	

Equations (8.66)–(8.69) are called the coupled wave equations. It should be noted that it
is the condition of Eq. (8.54) that allows E3E4EŁ

2 to participate in the generation of E1.
Inserting Eq. (8.46) into Eqs. (8.66)–(8.69), the required vector propagation constants
are found. For instance, with Eq. (8.66), the induced polarization (2nd term) has a
vector propagation constant of k3 C k4 � k2 and the excited E1 field (1st term) has the
propagation constant k1. An important condition for the maximum transfer of energy
of the induced polarization PNL into the electric field E1 is that both waves propagate
in phase throughout their paths. The condition of maximum coupling, therefore, is

k1 D k3 C k4 � k2 �8.70	
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Similarly, the maximum transfer of energy with Eq. (8.67) is k2 D k3 C k4 � k1. This
equation is exactly identical to Eq. (8.70). Similar conditions generated by Eqs. (8.68)
and (8.69) also satisfy Eq. (8.70).

In addition to the previously mentioned frequency condition, Eq. (8.54), the phase
matching condition, Eq. (8.70), has to be satisfied simultaneously for the maximum
energy coupling.Ł

In summary, the coupled wave equations govern the exchange of energy among the
four different frequency components. In the next section, solutions will be found with
an approximation imposed on the coupled wave equation.

8.10.4 Solutions with Bohr’s Approximation

Assumptions and approximations are imposed on the coupled wave equations, Eqs.
(8.66)–(8.69), to find the differential equations for the amplitudes. The first assumption
is that all waves are propagating in the z direction and

Ej D Aj�z	e
jsjkjz �8.71	

with kj D ωj
p
$0#0#r , where sj D C1 when the jth wave propagates in the positive

z direction, and sj D �1 when the jth wave propagates in the negative z direction.
Inserting Eq. (8.71) into the left hand side of Eq. (8.39) gives

�r2 C k2
j	Ej D

(
j2sjkj

dAj
dz

C d2Aj
dz2

)
ejsjkjz �8.72	

The second assumption is that the variation of Aj�z	 with respect to z is so slow that
its second derivative can be ignored compared to other terms. This approximation is
called Bohr’s approximation or the slowly varying envelope approximation. With these
approximations, Eq. (8.39) finally becomes

dAj
dz

D jsj
ωj
2

√
$0

#0#r
PNL�ωj	e

�jsjkjz �8.73	

Insertion of Eqs. (8.56)–(8.59) into Eq. (8.73) results in the following set of equations:

dA1

dz
D js1K1�Q1A1 C 2A3A4A

Ł
2e
j�s3k3Cs4k4�s2k2�s1k1	z	 �8.74	

dA2

dz
D js2K2�Q2A2 C 2A3A4A

Ł
1e
j�s3k3Cs4k4�s1k1�s2k2	z	 �8.75	

Ł In quantum mechanics, the four-photon collision has to satisfy both the conservation of energy,

h̄ω1 D h̄ω3 C h̄ω4 � h̄ω2

and the conservation of momentum

h̄k1 D h̄k3 C h̄k4 � h̄k2

where h̄ D h/2, and h is Planck’s constant.
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dA3

dz
D js3K3�Q3A3 C 2A1A2A

Ł
4e
j�s1k1Cs2k2�s4k4�s3k3	z	 �8.76	

dA4

dz
D js4K4�Q4A4 C 2A1A2A

Ł
3e
j�s1k1Cs2k2�s3k3�s4k4	z	 �8.77	

Kj D ωj
2

√
$0

#0#r
�eff �8.78	

Example 8.1 Figure 8.16 shows an arrangement for generating a phase conjugate
wave using the principle of holography [20]. Explain the operation using the coupled
wave equations.

Solution All frequencies used in the hologram are the same and

ω1 D ω2 D ω3 D ω4 D ω �8.79	

This satisfies the frequency condition in Eq. (8.54). Let E3 and E4 be the signal wave
Es and phase conjugate wave Ec, respectively. Let the propagation directions of these
two waves be along the z axis as shown in Fig. 8.16, with s3 D C1 for E3 and s4 D �1
for E4.

E3 D Es D Ase
jksz

E4 D Ec D Ace
�jkcz

�8.80	

Phase conjugate

Pump wave

Pump wave

Signal

z = 0 z = L

Ep2

Ep2

Ep1

Ec Es

Figure 8.16 Generating a phase conjugate wave from a hologram.
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Let the two pump waves Ep1 and Ep2 be represented by

E1 D Ep1 D Ape
jkp1 Ðr

E2 D Ep2 D Ape
jkp2 Ðr �8.81	

Their amplitudes are assumed equal. Furthermore, the amplitudes of the pump waves
are assumed to be so large that the depletion of the energy into either the signal or
phase conjugate waves is negligible, and the amplitudes can be considered not only
constant with respect to distance but also

jApj2 >> jAsj2

jApj2 >> jAcj2
�8.82	

The signal and conjugate waves propagate in opposite directions, so that

k3 C k4 D 0 �8.83	

and

s3 D C1

s4 D �1
�8.84	

and in order to satisfy Eq. (8.70),

kp1 C kp2 D 0 �8.85	

With Eq. (8.80)–(8.85), the coupled wave equations, Eqs. (8.76) and (8.77), become

dAs
dz

D jKf2jApj2As C A2
pA

Ł
cg

dAc
dz

D �jKf2jApj2Ac C A2
pA

Ł
s g

�8.86	

where

K D ω
√
$0

#0#r
�eff �8.87	

In order to remove the first term from the right-hand side of Eq. (8.86), the amplitude
and phase factors of As and Ac are explicitly written as

As D As0e
CjˇNLz

Ac D Ac0e
�jˇNLz �8.88	

As0 D As0�z	

Ac0 D Ac0�z	
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where

ˇNL D 2KjApj2 �8.89	

Inserting Eq. (8.88) into (8.86) gives

dAs0
dz

D jKA2
pA

Ł
c0 �8.90	

dAc0
dz

D �jKA2
pA

Ł
s0 �8.91	

Taking the derivative of Eq. (8.90) and inserting Eq. (8.91) gives

d2Ac0
dz2

CK2jApj4Ac0 D 0 �8.92	

and similarly,

d2As0
dz2

CK2jApj4As0 D 0 �8.93	

The general solution of Eq. (8.92) is

Ac0 D A cosKjApj2z C B sinKjApj2z �8.94	

From Eqs. (8.91) and (8.94), AŁ
s0 is expressed as

AŁ
s0 D j

AŁ
p

Ap
��A sinKjApj2z C B cosKjApj2z	 �8.95	

The integration constants A and B are determined from the boundary conditions:

Ac0�L	 D 0 at z D L �8.96	

As�0	 D As0�0	 at z D 0 �8.97	

From Eqs. (8.94) and (8.96), the integration constant A is

A D �B tanKjApj2L �8.98	

From Eqs. (8.95) and (8.97), the integration constant B is

B D Ap
jAŁ

p

AŁ
s0�0	 �8.99	

Inserting these constants into Eq. (8.94) and using Eq. (8.88) gives

Ac�z	 D j
Ap
AŁ
p

AŁ
s �0	e

�jˇNLz
sinKjApj2�L � z	

cosKjApj2L �8.100	
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and similarly, inserting Eqs. (8.98) and (8.99) into Eq. (8.95) and using Eq. (8.88)
gives

As�z	 D As�0	e
jˇNLz

cosKjApj2�L � z	

cosKjApj2L �8.101	

Now let us interpret the calculated results. From Eq. (8.100), the magnitude of Ac�z	
increases with distance from the back surface at z D L. Referring to Fig. 8.16, the
pump wave Ep2 is depleted into the phase conjugate wave by the deflection from the
fringes established by Ep1 and Es and is accumulated toward the front surface at z D 0.
Similarly, the signal wave As�z	 grows from the front surface to the back surface z D L
by the depletion of the pump wave Ep1 into Es. �

8.11 THE GAIN OF FORWARD FOUR-WAVE MIXING

The geometry shown in Fig. 8.16 is one example that satisfies both the frequency and
phase matching conditions. In this geometry, not only the two pump waves are coun-
terpropagating but also the signal and phase conjugate waves are counterpropagating.
In order to meet the phase matching condition of Eq. (8.70), each side of

k1 C k2 D k3 C k4 �8.102	

was set individually to zero. The frequency condition, Eq. (8.54),

ω1 C ω2 D ω3 C ω4 �8.103	

was met by letting all the frequencies be the same.
Another geometry will be investigated here. This time, all the waves are copropa-

gating in the forward direction [16,21]. It is certainly possible to meet the condition
of Eq. (8.102) by choosing identical k’s and choosing identical frequencies to meet
the condition of Eq. (8.103). In the earlier counterpropagating case, a half-mirror was
good enough to separate the phase conjugate and signal waves. This is not possible
in the copropagating case. A remedy for this is the use of multiple frequencies that
meet the frequency condition of Eq. (8.103). One way this can be done is to set the
average value of ω3 and ω4 equal to the average value of ω1 and ω2, as shown in
Fig. 8.17a.

A special case of Fig. 8.17a is shown in Fig. 8.17b. That special case occurs when ω1

and ω2 are identical, and the four-wave mixing is semidegenerate. This arrangement,
when ω1 (or ω2) is taken as a pump wave, necessitates only one pump wave and
simplifies the implementation. Figure 8.18 shows the implementation. The signal and
pump waves are fed into a dispersion-shifted fiber and the outputs are the phase
conjugate, signal, and pump waves, among which the phase conjugate wave is selected
by means of an optical filter. The core glass of the dispersion-shifted fiber is used as
the ��3	 nonlinear medium.

Next, the output powers of the signal and phase conjugate waves are calculated
using the coupled wave equations, Eqs. (8.74)–(8.77). The procedure is quite similar to
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Figure 8.17 Spectra of forward four-wave mixing. (a) Nondegenerate case. (b) Semidegenerate case.
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Figure 8.18 Forward four-wave mixing.

the reflection type presented in Example 8.1, and emphasis is placed on pointing out
the differences, as well as the significance of the phase matching condition imposed
on kj by Eq. (8.70). Referring to Fig. 8.18, let us denote

E1 D E2 D Ape
jkpz �8.104	

E3 D Es D Ase
jksz �8.105	

E4 D Epc D Ace
jkcz �8.106	
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In this case, all waves are propagating in the forward direction, and

sj D 1 �8.107	

With Eq. (8.82), the coupled wave equations, Eqs. (8.74)–(8.77), become

dAp
dz

³ j 3
2KjApj2Ap �8.108	

dAs
dz

D jK�2jApj2As C A2
pA

Ł
ce
jkz	 �8.109	

dAc
dz

D jK�2jApj2Ac C A2
pA

Ł
s e
jkz	 �8.110	

k D k1 C k2 � k3 � k4 �8.111	

In order to remove the first terms from both Eqs. (8.109) and (8.110), the amplitude
and phase factors of As and Ac are explicitly written as

As D As0e
jˇNLz �8.112	

Ac D Ac0e
jˇNLz �8.113	

ˇNL D 2kjApj2

Inserting the expressions for As and Ac in Eqs. (8.112) and (8.113) into Eqs. (8.109)
and (8.110) gives

dAs0
dz

D jKA2
pA

Ł
c0e

j�k�2ˇNL	z �8.114	

dAc0
dz

D jKA2
pA

Ł
s0e

j�k�2ˇNL	z �8.115	

The procedure for solving the differential equations starts with Eq. (8.108). The solution
of Eq. (8.108) with the boundary condition Ap D Ap�0	 at z D 0 is

Ap D Ap�0	e
jˇpz �8.116	

where

ˇp D 3
2KjApj2 �8.117	

It should be noted that both ˇp and ˇNL are a function of the intensity jApj2 and are
nonlinear with the pump field.

Inserting Eq. (8.116) into Eqs. (8.114) and (8.115) gives

dAs0
dz

D jKA2
p�0	A

Ł
c0e

jz �8.118	

dAŁ
c0

dz
D �jKA2

p�0	As0e
�jz �8.119	

where

 D 2�ˇp � ˇNL	Ck �8.120	
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With Eqs. (8.89) and (8.117), Eq. (8.120) is further rewritten as

 D k �KA2
p�0	 �8.121	

Assumed solutions

As0 D [Aegz C Be�gz]ej�/2	z �8.122	

AŁ
c0 D [Cegz C De�gz]e�j�/2	z �8.123	

are put into Eqs. (8.118) and (8.119). The prime target of this calculation is to obtain
the value of the gain g.

Let

KA2
p�0	 D a �8.124	

Inserting Eqs. (8.122) and (8.123) into Eq. (8.118) gives

[�gC j/2	A� jaC]e�gCj/2	z C [��gC j/2	B � jaD]e��gCj/2	z D 0 �8.125	

For Eq. (8.125) to be satisfied for any value of z, the values in the square brackets
have to vanish:

�gC j/2	A� jaC D 0 �8.126	

��gC j/2	B � jaD D 0 �8.127	

Similarly, inserting Eqs. (8.122) and (8.123) into Eq. (8.119) gives

jaAC �g� j/2	C D 0 �8.128	

jaB� �gC j/2	D D 0 �8.129	

Equations (8.126)–(8.129) are rearranged in a matrix form as

∣∣∣∣∣∣∣

�gC j/2	 0 �ja 0
0 ��gC j/2	 0 �ja
ja 0 �g� j/2	 0
0 ja 0 ��gC j/2	

∣∣∣∣∣∣∣

∣∣∣∣∣∣∣

A
B
C
D

∣∣∣∣∣∣∣
D 0 �8.130	

For nonzero A, B, C, and D to exist, the determinant of Eq. (8.130) has to vanish. The
value of the determinant is

[g2 C �/2	2 � a2]2 D 0 �8.131	

and finally,

g D š
√
a2 � �/2	2 �8.132	
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Putting back the parameters from Eqs. (8.121) and (8.124) gives

g D
√
�2KA2

p�0		
2 � �k �KA2

p�0		
2/2 �8.133	

Thus, for a given value of Ap, the gain g becomes maximum when

k �KA2
p�0	 D 0

That is, when the combination of the linear and nonlinear phase factors becomes zero
rather than k alone becomes zero.

If Ac0 D 0, at z D 0, from Eq. (8.123),

C D �D �8.134	

and with Eqs. (8.113) and (8.134), Eq. (8.123) becomes

Ac�z	 D 2C sinh�gz	ej�ˇNLC/2	z �8.135	

The amplitude of the conjugate wave increases with the hyperbolic sine of the distance.

8.12 PULSE BROADENING COMPENSATION BY FORWARD
FOUR-WAVE MIXING

Pulse broadening in an optical fiber limits the transmission capability of fiber optic
communication. A method for narrowing a broadened light pulse is by means of
four-wave mixing [13,22–24]. The principle is exactly the same as that illustrated
in Fig. 8.5, where the distorted wave is reflected by a phase conjugator and retraces
the time history of the distortion up to the original waveform as it goes back through
the distorting medium again.

When applying this principle to fiber optic communication systems, a phase
conjugator is placed in the middle of the transmission cable. The signal wave propagates
down the first half of the fiber cable, and the phase conjugate wave is funneled into
the second half of the fiber cable. An assumption has to be made that both halves of
the fiber have the same physical properties and the same length.

Figure 8.19 shows the scheme for pulse broadening compensation by means of
semidegenerate forward four-wave mixing with ω1 D ω2 D ωp, ω3 D ωs and ω4 D ωc.
Referring to Fig. 8.19, the transmitter light pulse is fed into a single mode optical fiber
of length L1. At L1, the pulse enters the phase conjugator. The phase conjugator utilizes
the nonlinear property of the core glass of a dispersion-shifted fiber. The broadband
nature of the dispersion-shifted fiber allows for easy phase matching among the signal,
phase conjugate, and pump waves. The pump wave is added to the signal by means of
a beam combiner to drive the phase conjugator. Both the pump and the signal waves
are removed at the exit of the phase conjugator by means of an optical filter. Only the
phase conjugate wave is fed into the other half of the single mode fiber. The phase
conjugate wave travels a distance L2 to the receiver. If L1 D L2, then the transmitted
pulse will be recovered when the phase conjugate wave reaches the receiver.

Now let us analyze the compensation process in more detail. Referring again to
Fig. 8.19, a light pulse E1�z, t	 is launched into a single mode fiber at z D 0. The
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Figure 8.19 Pulse broadening compensation by four-wave mixing. DS fiber, dispersion-shifted fiber;
SM fiber, single mode fiber.

carrier frequency fs of the light pulse is modulated by an envelope function g�t	:

E1�0, t	 D g�t	 cos 2,fst �8.136	

The frequency spectra of the input light is obtained by the Fourier transform as

F�E1	 D 1
2 [G�f� fs	CG�fC fs	] �8.137	

where

Ffg�t	g D G�f	 �8.138	

The Fourier transform G�f	 of the envelope is shifted by fs to the right and by �fs
to the left in the frequency domain. The narrower the width of the input pulse in time,
the greater the spread of the spectra in the frequency domain.

Each frequency component in this spectra propagates at its own phase velocity and
reaches the receiver. Unless each frequency component propagates at the same velocity,
the relative phase relationship is upset and the received pulse becomes distorted.

First, the behavior of a single frequency wave as it propagates to its destination is
analyzed. Once the behavior of one frequency component is known, the received pulse
shape is obtained by integrating over frequency.

Let the chosen frequency be f D fs C 7, which is 7 away from fs. From Eq. (8.137),
this frequency component has an amplitude of 1

2G�7	. The propagation of this frequency
component through the first half L1 of a long fiber is

dE2 D 1
2G�7	 d7e

�j2,�fsC7	tCjˇ�fsC7	L1 C c.c. �8.139	

The value of the propagation constant ˇ at fs C 7 can be approximated by the Taylor
series expansion, 7 being usually at most one thousandth of fs,

ˇ�fs C 7	 D ˇ�fs	C ˇ0�fs	7C 1
2ˇ

00�fs	72 C Ð Ð Ð �8.140	

Thus, the expression for the single frequency spectrum at the input to the phase
conjugator is

dE2 D 1
2G�7	 d7e

�j2,�fsC7	teCjˇ�fs	L1Cjˇ0�fs	L17C 1
2 jˇ

00�fs	L172 C c.c. �8.141	
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The output dE3 from the phase conjugator is the phase conjugate of the input except
for the time factor,

dE3�7	 D 1
2

p
7cG

Ł�7	 d7e�j2,�fsC7	te�jˇ�fs	L1�jˇ0�fs	L17� 1
2 jˇ

00�fs	L172 C c.c. �8.142	

where 7c is the conversion efficiency, which is determined by such parameters as the
gain given by Eq. (8.133), fiber loss and beam combiner loss.

In the second half of the optical fiber, the phase conjugate wave propagates. In the
degenerate case of Eq. (8.103), the frequency fc of the phase conjugate wave is shifted
to the other side of the pump frequency fp, as shown in Fig. 8.17b, and

fc D 2fp � fs �8.143	

With the input of fs C 7, the new shifted frequency f0
c is

f0
c D fc � 7 �8.144	

The propagation constant in the second fiber at frequency fc � 7 is obtained from the
Taylor series expansion

ˇ�fc � 7	 D ˇ�fc	� ˇ0�fc	7C 1
2ˇ

00�fc	72 C Ð Ð Ð �8.145	

The signal reaching the receiver is therefore

dE4�7	 D 1
2

p
7cG

Ł�7	d7ej[�2,�fc�7	tCˇ�fc	L2�ˇ�fs	L1]

ð e�j[ˇ0�fs	L1Cˇ0�fc	L2]7C 1
2 j[ˇ00�fc	L2�ˇ00�fs	L1]72 C c.c. �8.146	

where the fs and fp components have been filtered out by filter F2.
Let us put

� D ˇ�fc	L2 � ˇ�fs	L1 �8.147	

8 D 1

2,
[ˇ0�fc	L2 C ˇ0�fs	L1] �8.148	

 D 1
2 [ˇ00�fc	L2 � ˇ00�fs	L1] �8.149	

dE4�7	 D 1
2

p
7cG

Ł�7	 d7e�j2,fctCj�Cj2,�t�8	7Cj 72 C c.c. �8.150	

The waveform of the received signal is obtained by integrating over frequency:

E4 D 1
2

p
7ce

�j2,fctCj�
∫
GŁ�7	ej2,�t�8	7Cj 72

d7C c.c. �8.151	

First, let us deal with the case when

 D 0 �8.152	
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Equation (8.151) is in the form of an inverse Fourier transform and

E4�L1 C L2, t	 D 1
2

p
7ce

�j2,fctCj�gŁ�8 � t	C c.c. �8.153	

If the envelope function g is assumed real, the final result is

E4�L1 C L2, t	 D p
7cg�8 � t	 cos��2,fct C �	 �8.154	

Equation (8.154) shows that the envelope function of the received pulse is exactly the
same as that of the transmitted pulse except that g�8 � t	 is time reversed. The original
envelope g(0) reappears 8 seconds later. Thus, 8 is the total transmission time of the
envelope from z D 0 to z D L1 C L2.

Next, the case when  6D 0 is considered. Equation (8.151) becomes

E4 D e�j2,fctCj�g�8 � t	 Ł F�1fe�j72g �8.155	

The pulse shape is now convolved with F�1fe�j 72g, creating a distortion in the
received pulse. The distortionless condition, however, can be achieved from Eq. (8.149)
by setting

ˇ00�fc	L2 D ˇ00�fs	L1 �8.156	

(a)

(b)

(c)

Figure 8.20 Received pulse shapes of (1110001100101010) coded patterns and eye-patterns for
a 10-Gb/s intensity modulated signal at P1 D P2 D C5 dBm. (a) A 5-m transmission without OPC.
(b) A 200-km transmission without OPC. (c) A 200-km transmission with OPC at the midpoint. (Scale
units of pulse shapes in left column: V, 50 mV/div.; H, 200 ps/div. Scale units of pulse shapes in right
column: V, 25 mV/div.; H, 20 ps/div. (After S. Watanabe et al. [22].)
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One way of obtaining this condition is to use a fiber with the same length for both
halves of the transmission cable.

Pulse broadening compensation with 10 Gb/s pulse modulated light is demonstrated
in Fig. 8.20 [22]. Figure 8.20a shows the input signal. Figure 8.20b shows the same
signal after 200-km transmission without the optical phase conjugator (OPC) and
Fig. 8.20c shows the result when the phase conjugator is inserted in the middle of
the fiber transmission. Figure 8.20 confirms the effectiveness of pulse broadening
compensation in an optical fiber by means of four-wave mixing.

PROBLEMS

8.1 In the text, the distorting medium in Fig. 8.4 was assumed to be free of temporal
variations: that is, the temporal variations either did not exist or were so slow that
they could be taken as constant for the duration of the experiment. Consider a
distorting medium in which temporal fluctuations cannot be ignored. For simpli-
city, assume that the fluctuation is sinusoidal with time and is expressed as
�t	 D  cosωt. What are the distances L between the distorting medium and
the phase conjugate mirror (Fig. P8.1) that make the best distortion-free image
and the worst distorted image?

8.2 Consider a crystal whose one-dimensional charge distribution is as shown in
Fig. P8.2.

(a) Does this crystal have inversion symmetry?

(b) Draw the redistributed charges when exposed to the E field of an incident
light wave.

(c) Does such a crystal possess a second order nonlinearity?

8.3 Does a crystal with inversion symmetry have a fourth order nonlinearity?

Distorting medium

Phase conjugate
mirror

Φ

L

S

Figure P8.1 Temporally varying distorting medium.
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+ − + +− −

c

E = 0

Figure P8.2 Does this crystal have nonzero ��2	?

8.4 Three lightwaves having adjacent frequencies are incident onto an optical fiber
(Fig. P8.4). Find the frequency spectra generated in the fiber due to the third
order nonlinear effect. All incident waves are assumed to be polarized in the x
direction [25].

8.5 Assuming the degenerate case, if the directions of k1 and k2 are set as shown in
Fig. P8.5, find the directions of k3 and k4 that sustain four-wave mixing.

8.6 Draw all possible fringe patterns in a medium when four waves are incident as
shown in Fig. P8.6.

f1 f2 f3 Frequency

Figure P8.4 Spectra of light incident onto an optical fiber having a third order nonlinearity.

k1 k2

Figure P8.5 Finding the condition of four-wave mixing.
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k1

k2

k3

k4

Figure P8.6 A configuration for a degenerate type of four-wave mixing.

8.7 In the text, the case of forward four-wave mixing was dealt with, but the
attenuation in the dispersion-shifted fiber was not taken into consideration. With
an amplitude attenuation constant ˛, Eqs. (8.108)–(8.111) become

dAp
dz

D ��˛C j 3
2KjApj2	Ap

dAs
dz

D ��˛C j2KjApj2	As C jKA2
pA

Ł
ce
jkz

dAc
dz

D ��˛C j2KjApj2	Ac C jKA2
pA

Ł
s e
jkz

Find the differential equations with attenuation in the fiber.
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APPENDIX A
DERIVATION OF THE

FRESNEL–KIRCHHOFF
DIFFRACTION FORMULA FROM
THE RAYLEIGH–SOMMERFELD

DIFFRACTION FORMULA

The Rayleigh–Sommerfeld diffraction formula uses the Fourier transform of the input
field, but Fresnel–Kirchhoff’s integral equation uses the input field directly to find
the diffraction field. This appendix shows how the latter is derived from the former
formula (Kazuo Tanaka, private communication).

By combining Eq. (1.177) with (1.178), an expression for the diffraction pattern can
be obtained directly from the input field as

E�xi, yi, zi� D
∫∫ (∫∫

E�x0, y0, 0�e�j2�fxx0�j2�fyy0dx0 dy0

)

ð ej2�
p

f2
s �f2

x �f2
y ziej2�fxxiCj2�fyyi dfx dfy �A.1�

Reversing the order of integration gives

E�xi, yi, zi� D
∫∫

dx0 dy0E�x0, y0, 0�
∫∫

ej2�
p

f2
s �f2

x �f2
y zi

ð ej2�fx�xi�x0�Cj2�fy�yi�y0� dfx dfy �A.2�

The integration Eq. (A.2) can be performed using Weyl’s expansion theorem [1],
which expresses a spherical wavefront in integral form as

ej2�fsr

r
D j

∫∫
ej2�fx�xi�x0�Cj2�fy�yi�y0�Cj2�fzz

fz
dfx dfy �A.3�

where

r2 D �xi � x0�2 C �yi � y0�2 C z2
i �A.4�

545
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The factor 1/fz in Eq. (A.3) must be removed in order to use it in the integral of
Eq. (A.2). This can be accomplished by differentiating both sides of Eq. (A.3) with
respect to z. The result is

� 1

2�

∂

∂z

(
ej2�fsr

r

)
D
∫∫

e2�fx�xi�x0�Cj2�fy�yi�y0�Cj2�fzz dfx dfy �A.5�

Inserting Eq. (A.5) into (A.2) gives

E�xi, yi, zi� D � 1

2�

∫∫
E�x0, y0, 0�

∂

∂z

(
ej2�fsr

r

)
dx0 dy0 �A.6�

The derivative with respect to z in Eq. (A.6) is first performed as

∂

∂z

(
ej2�fsr

r

)
D

(
� 1

r2
ej2�fsr C j2�fs

ej2�fsr

r

)
dr

dz
�A.7�

For a large value of r, the second term on the right-hand side of Eq. (A.7) dominates,
and

∂

∂z

(
ej2�fsr

r

)
� j2�fs

ej2�fsr

r

z

r
�A.8�

where z/r was obtained from the derivative of Eq. (A.4).
From the para-axial approximation, namely, in the region where

z2 × �xi � x0�2 C �yi � y0�2 �A.9�

the ratio z/r ¾D 1. Thus Eq. (A.8) becomes

∂

∂z

(
ej2�fsr

r

)
� j2�fs

ej2�fsr

r
�A.10�

From this result, and by substituting fs D 1/�, Eq. (A.6) becomes

E�xi, yi, zi� D 1

j�

∫∫
E�x0, y0, 0�

ej�2�/��r

r
dx0 dy0 �A.11�

This equations is known as the Fresnel–Kirchhoff integral of diffraction, which repre-
sents the diffraction pattern for a given input field.

The final equation, the Fresnel–Kirchhoff integral (Eq. (A.11)), is identical to
Eq. (1.28), which was derived earlier without rigorous proof. The analysis here has
proved that the constant K given by Eq. (1.29) is true.
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APPENDIX B
WHY THE ANALYTIC SIGNAL

METHOD IS NOT APPLICABLE
TO THE NONLINEAR SYSTEM

Let us review the common approach to solving an RL network by the method of the
analytic signal (phasor). A rule that electrical engineering students use is to replace
V cos ωt by Vejωt, but not by 1

2 �Vejωt C c.c.	, which is the mathematically exact equiv-
alent, and to “take the real part” of the final solution instead of both real and imaginary
parts of the solution.

Method I This is how an electrical engineering student solves the problem of the RL
circuit shown in Fig. B.1. The differential equation for the analytic signal Vejωt is

L
dia
dt

C Ria D Vejωt �B.1	

The method of undetermined coefficients is used. Let an assumed solution be

ia�t	 D Iejωt �B.2	

Inserting Eq. (B.2) into (B.1) gives

�jωL C R	I D V �B.3	

I D V

jωL C R
�B.4	

D V√
�ωL	2 C R2

e�j� �B.5	

where

� D tan�1
(

ωL

R

)

547
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iV cos wt

Figure B.1 RL circuit driven by V cos ωt.

From Eqs. (B.2) and (B.5),

ia�t	 D V√
�ωL	2 C R2

ej�ωt��	 �B.6	

The final step is to take the real part of Eq. (B.6). The answer is

i�t	 D Re ia�t	 D V√
�ωL	2 C R2

cos�ωt � �	 �B.7	

Method II The same problem will be solved by driving with

v�t	 D V cos ωt �B.8	

Equation (B.8) is rewritten as

v�t	 D V

2
�ejωt C e�jωt	 �B.9	

Now, since the differential equation (B.1) is linear, the law of superposition holds
true. The solution will be obtained by adding i1 when driven by �V/2	ejωt and i2

when driven by �V/2	e�jωt.
The value of i1 is immediately obtained by replacing V by V/2 in Eq. (B.6) as

i1�t	 D V

2

1√
�ωL	2 C R2

ej�ωt��	 �B.10	

and

i1�t	 D 1
2 ia �B.11	

Next, the circuit is driven by �V/2	e�jωt. An assumed solution

i2�t	 D Ie�jωt �B.12	
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is put into Eq. (B.1):

I D V

2

(
1

�jωL C R

)
�B.13	

Inserting Eq. (B.13) into (B.12) gives

i2�t	 D V

2

1√
�ωL	2 C R2

e�j�ωt��	 �B.14	

and

i2�t	 D 1
2 iŁa �B.15	

Using the law of superposition, the solution of Eq. (B.9) is

i�t	 D i1�t	 C i2�t	 D V√
�ωL	2 C R2

cos�ωt � �	 �B.16	

Thus, it has been proved that Methods I and II provide the same answer.
Let’s examine the key points that made the two answers the same. The law of

superposition gave

i�t	 D i1�t	 C i2�t	 �B.17	

From Eqs. (B.11) and (B.15),

i�t	 D 1
2 [ia�t	 C iŁa�t	] �B.18	

Since Re z D 1
2 �z C zŁ	 the operation of Eq. (B.18) is identical with the operation of

“taking the real part of ia�t	.” Thus,

i�t	 D Re ia�t	 �B.19	

The equality of the solutions by the two methods cannot be realized if the law of
superposition expressed by Eq. (B.17) is not true. The law of superposition, however, is
realized only when the differential equation is linear, as explained below. This leads to
the conclusion that the method of analytic signal cannot be used for solving a nonlinear
differential equation, and expressions such as Eq. (B.8) or (B.9) have to be used to
express the driving voltage.

Finally, we give a proof that the law of superposition is realized only when the
differential equation is linear. The proof is made using the same differential equation.
When the circuit is driven by v1, the solution i1 has to satisfy

L
di1

dt
C Ri1 D v1 �B.20	

whereas when driven by v2, the solution i2 has to satisfy

L
di2

dt
C Ri2 D v2 �B.21	
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Now, let the solution be i when the circuit is excited by v1 C v2:

L
di

dt
C Ri D v1 C v2 �B.22	

Inserting Eqs. (B.20) and (B.21) into the right-hand side of Eq. (B.22) gives

L
di

dt
C Ri D L

d

dt
�i1 C i2	 C R�i1 C i2	 �B.23	

Comparing both sides of Eq. (B.23), we see that

i D i1 C i2 �B.24	

is the solution when the circuit is driven by v1 C v2.
In other words, when i1 is the response of stimulus v1 and i2 is the response of

stimulus v2, the response of the two stimuli together, v1 C v2, is the addition of the
two responses, i1 C i2. This is the law of superposition, which holds true only when
the differential equation is linear; meaning that L and R, which are the coefficients of
di/dt and i in Eq. (B.1), are not a function of i.

Let us now examine the case of the nonlinear differential equation. As an example
of a nonlinear differential equation, let us consider the case when the value of the
resistance R is changed due to the generated heat. Such a system may be represented
approximately by the differential equation

L
di

dt
C Ri3 D v �B.25	

When the circuit is driven by v1, the current i1 has to satisfy

L
di1

dt
C Ri3

1 D v1 �B.26	

Similarly, when it is driven by v2, i2 has to satisfy

L
di2

dt
C Ri3

2 D v2 �B.27	

Next, when v1 and v2 are applied simultaneously,

L
di

dt
C Ri3 D v1 C v2 �B.28	

Inserting Eqs. (B.25) and (B.26) into the right-hand side of Eq. (B.28) gives

L
di

dt
C Ri3 D d

dt
�i1 C i2	 C R�i1 C i2	3 � 3R�i2

1i2 C i1i2
2	 �B.29	

Comparing both sides of Eq. (B.29), we see that

i D i1 C i2

is no longer the solution of Eq. (B.28). The law of superposition no longer holds true
with a nonlinear differential equation.
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APPENDIX C

DERIVATION OF PNL

In order to shorten the descriptions, let us put

a D E1e�jω1t

b D E2e�jω2t

c D E3e�jω3t

d D E4e�jω4t


C.1�

Equation (8.53) becomes

PNL D Ox�0

xxxx

8

a C aŁ C b C bŁ C c C cŁ C d C dŁ�3 
C.2�

Putting

q D a C b C c C d 
C.3�

PNL D �0

xxxx

8

q C qŁ�3 
C.4�

Note that


q C qŁ�3 D q3 C 3q2qŁ C c.c. 
C.5�

Frequencies associated with q3 are too high and are out of the range of interest. The
q3 terms will be discarded.

PNL D 3
8 �0
xxxx
q

2qŁ C c.c.� 
C.6�

Discarding q3 makes a substantial reduction in the number of calculations. The last step
is inserting Eq. (C.3) into Eq. (C.6) and performing the multiplication. The result is

q2qŁ C c.c. D a
jaj2 C 2jbj2 C 2jcj2 C 2jdj2� C b
2jaj2 C jbj2 C 2jcj2 C 2jdj2�
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C c
2jaj2 C 2jbj2 C jcj2 C 2jdj2� C d
2jaj2 C 2jbj2 C 2jcj2 C jdj2�

C 2aŁ
bc C cd C db� C 2bŁ
ac C cd C da� C 2cŁ
ab C bd C da�

C 2dŁ
ab C bc C ca� C aŁ
b2 C c2 C d2� C bŁ
a2 C c2 C d2�

C cŁ
a2 C b2 C d2� C dŁ
a2 C b2 C c2� C c.c. 
C.7�

These terms generate a variety of beat frequencies. From Eq. (C.1), terms such as
aŁbc, aŁcd, and aŁdb create frequency components of ω2 C ω3 � ω1, ω3 C ω4 � ω1,
and ω2 C ω4 � ω1, respectively. Moreover, for the set of equations that are commen-
surate with each other,

ω4 D ω1 C ω2 � ω3 
C.8�

and these frequency components become 2ω2 � ω4, ω2, and 2ω2 � ω3, respectively.
Note, in particular, that bŁcd, aŁcd, dŁab, and cŁab become ω1, ω2, ω3, and ω4, respec-
tively.

Rewriting Eq. (C.7) using Eqs. (C.1) and (C.8) reduces Eq. (C.6) to

PNL D 1
2 Ox[PNL
ω1�ejω1t C PNL
ω2�ejω2t C PNL
ω3�ejω3t C PNL
ω4�ejω4t

C PNL
2ω1 � ω2� C PNL
2ω1 � ω3� C PNL
2ω1 � ω4�

C PNL
2ω2 � ω1� C PNL
2ω1 � ω3� C PNL
2ω2 � ω4�

C PNL
2ω3 � ω1� C PNL
2ω3 � ω2� C PNL
2ω3 � ω4�

C PNL
2ω4 � ω1� C PNL
2ω4 � ω2� C PNL
2ω4 � ω3� C c.c.]

where

PNL
ω1� D 
eff[
jE1j2 C 2jE2j2 C 2jE3j2 C 2jE4j2�E1 C 2E3E4EŁ
2]

PNL
ω2� D 
eff[
2jE1j2 C jE2j2 C 2jE3j2 C 2jE4j2�E2 C 2E3E4EŁ
1]

PNL
ω3� D 
eff[
2jE1j2 C 2jE2j2 C jE3j2 C 2jE4j2�E3 C 2E1E2EŁ
4]

PNL
ω4� D 
eff[
2jE1j2 C 2jE2j2 C 2jE3j2 C jE4j2�E4 C 2E1E2EŁ
3]

PNL
2ω1 � ω2� D 
effE
2
1EŁ

2

PNL
2ω1 � ω3� D 
eff
E
2
1EŁ

3 C 2E1E4EŁ
2�

PNL
2ω1 � ω4� D 
eff
E
2
1EŁ

4 C 2E1E3EŁ
2�

PNL
2ω2 � ω1� D 
effE
2
2EŁ

1

PNL
2ω2 � ω3� D 
eff
E
2
2EŁ

3 C 2E2E4EŁ
1�

PNL
2ω2 � ω4� D 
eff
E
2
2EŁ

4 C 2E2E3EŁ
1�

PNL
2ω3 � ω1� D 
eff
E
2
3EŁ

1 C 2E2E3EŁ
4�

PNL
2ω3 � ω2� D 
eff
E
2
3EŁ

2 C 2E1E3EŁ
4�

PNL
2ω3 � ω4� D 
effE
2
3EŁ

4
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PNL
2ω4 � ω1� D 
eff
E
2
4EŁ

1 C 2E2E4EŁ
3�

PNL
2ω4 � ω2� D 
eff
E
2
4EŁ

2 C 2E1E4EŁ
3�

PNL
2ω4 � ω3� D 
effE
2
4EŁ

3


eff D 3�0

4

xxxx
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ANSWERS TO PROBLEMS

Chapter 1

1.1 (a)

k · r D 67.32

2�f D 2.44 ð 1015

k · r D 2�

�
�x sin� cos � C y sin� sin � C z cos��

Hence, � D 0.497 µm, where � is the wavelength in the medium.

(b) The wavelength �a in air is found from

2�f D 2�
c

�a

and �a D 0.77 µm. Thus,

n D �a
�

D 0.772

0.497
D 1.55

1.2 (a) We have

fz D
√
f2
s � f2

x � f2
y D

√(
1

0.84

)2

� 0.62 � 0.82

D 0.645 line/µm

From Eq. (1.20)

ex D fx
fs

D 0.84 ð 0.6 D 0.504

ey D fy
fs

D 0.84 ð 0.8 D 0.672

ez D fz
fs

D �0.84��0.65� D 0.55

ex D sin� cos � D 0.504
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ey D sin� sin � D 0.672

ez D cos� D 0.545

� D 57° and � D 53°

(b) The angle � between Oe and OeOl (see Fig. A1.2) is

cos � D Oe Ð OeOl

Hence, �l Oe Ð Oel D �s.

0.84 D �l�
3
5 i C 4

5 j�·�0.504i C 0.672j C 0.55k� D 0.84�l

fl D 1

�l
D 1 line/µm

y

0

ê

x

qll

ls ′

l̂

Figure A1.2 Wavelength measured along a line in the direction Ol.

1.3 The Fourier transform of the input function is

Fft�x0, y0�g D
∫∫ 1

�1

(
1 C ej2fx0x0 C e�j2�fx0x0

2

)
e�j2�fxx0dx0 dy0

D [υ�fx�C 1
2υ�fx � fx0�C 1

2υ�fx C fx0�
]
υ�fy�

From Eq. (1.36), the diffraction pattern is

E�xi, yi� D ejk[ziC�x
2
i Cy2

i �/2zi�]

j�zi

[
υ

(
xi
�zi

)
C 1

2
υ

(
xi
�zi

� fx0

)

C1

2
υ

(
xi
�zi

C fx0

)]
υ

(
yi
�zi

)

The result is three peaks, as shown in Fig. A1.3.
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lzifx 0 lzifx 0 xi0

0.5

1

Figure A1.3 Diffraction pattern from the sinusoidal transmittance.

1.4 The current along the dipole antenna is expressed as

I�x0� D I0 cos
(

2�

�
x0

)


(
2x0

�

)

FfI�x0�g D �

4
I0

[
υ

(
f� 1

�

)
C υ

(
fC 1

�

)]
Ł sinc

(
�

2
f

)

D �

4
I0

[
sinc

�

2

(
f� 1

�

)
C sinc

�

2

(
fC 1

�

)]

D �

2�
I0


 sin

(�
2
�f� �

2

)
��f� 1�

C
sin
(�

2
�fC �

2

)
��fC 1�




The radiation pattern of the antenna is

E� D 60

j�
F fI�x0�gfD�cos ��/� sin �

A few things should be noted about the result. There exist some differences in
convention for expressing the same quantities (see Fig. A1.4). In antenna theory,
the elevation angle � is measured from the antenna axis rather than �0 from the
normal to the antenna axis, and f D �cos ��/� rather than f D �sin ��/� is used.
Also, the field E� of the � component is used rather than the Ex component, and
a factor sin � has to be multiplied. The final result is

E� D �j60I0

cos
(�

2
cos �

)
sin �
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x

Ex

Er

Eq

q

q ′

P

z0Source

Antenna

~

Figure A1.4 Field from a half-wave dipole antenna.

1.5

A� 2, B� 1, C� 4, D � 3

1.6

A� 4, B� 1, C� 2, D � 3

1.7 (a) The diffraction pattern at z D zi of the finite-sized lens is

E�xi, yi� D ejk[ziC�x2
i Cy2

i �/2zi]

j�zi
F

{

( x
a

)

(y
a

)
︸ ︷︷ ︸

Aperture

ð e�jk[�x2Cy2�/2f0]︸ ︷︷ ︸
Lens

ejk[�x2Cy2�/2zi]︸ ︷︷ ︸
Part of point spread

function

}
fxDxi/�zi, fyDyi/�zi

At the focal plane zi D f0 the last two factors cancel and

E�xi, yi� D ejk[f0C�x2
i Cy2

i �/2f0]

j�f0
sinc

(
a
xi
�f0

)
sinc

(
a
yi
�f0

)
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The diffraction-limited main lobe spot size (zero crossing) is(
2�f0

a

)
ð
(

2�f0

a

)

(b) a D 2�f0

x
D 2�0.555 ð 10�6�C �50 ð 10�3�

�1 ð 10�6�
D 55.5 mm

1.8 Figure P1.8 shows the geometry for taking a picture with a pinhole camera. For
simplicity, only one point P0 at (l0, 0, d1) on the object is considered and the
object is expressed by υ�x0 � l0�υ�y0�. The aperture of the camera is in the x–y
plane, which is d1 away from the object. The aperture function is �x/a��y/a�.
The field that is illuminating the aperture is a spherical wave emanating from
(l0, 0, d1), and the field on the aperture is

E�x, y� D E0

j�d1
exp
[
jk

(
d1 C �x � l0�2 C y2

2d1

)]

(x
a

)

(y
a

)
�1�

Before calculating the diffraction pattern of the field within the aperture,
projected onto the film of the camera, some assumptions are made.

Assumption 1. The pinhole is made small such that the term with x2 C y2 in the
exponent can be ignored, and E�x, y� can be approximated as

E�x, y� � E0

j�d1
ejk[d1Cl20/2d1�l0x/d1] �2�

Using Eq. (1.38) again, the image on the film is calculated as

E�xi, yi� D �E0

�2d1d2
exp

[
jk

(
d1 C d2 C l20

2d1
C x2

i C y2
i

2d2

)]
F
{
e�jkl0x/d1

ð
(x
a

)

(y
a

)
ejk�x

2Cy2�/2d2

}
fxDxi/�d2, fyDyi/�d2

�3�

where d2 is the length between the aperture and the film of the pinhole camera.
An additional assumption is made.

Assumption 2. The limits of the Fourier transform integral of Eq. (3) are from �a
to a. The value of the exponent in the fourth term inside the Fourier transform
is at most ka2/2d2, and the size að a of the pinhole will be chosen so that this
value is much smaller than unity.

With Assumption 2, Eq. (3) can be approximated as

E�xi� D � E0a2

�2d1d2
exp

[
jk

(
d1 C d2 C l20

d1
C x2

i C y2
i

2d2

)]

ð sinc
[
a

(
l0
�d1

� xi
�d2

)]
sinc

(
ayi
�d2

)
�4�
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Thus, the image formed on the film is a sinc function centered at ��l0d2/d1, 0�
with the size of the main lobe of 2�d2/a. Because of Assumption 2, this no
longer holds true for larger values of a.

1.9 The output from lens L1 is

E1�x, y,f1� D ejkf1

j�f1
G

(
x

�f1
,
y

�f1

)

which is the input to lens L2. The output from lens L2 is

E2�xi, yi� D ejk�f1Cf2�

j�f2
F
{

1

j�f1
G

(
x

�f1
,
y

�f1

)}
fxDxi/�f2,fyDyi/�f2

D ejk�f1Cf2�

j�f2

��f1�2

j�f1
g

(
��f1

�f2
xi,��f1

�f2
yi

)

E2�xi, yi� D �f1

f2
ejk�f1Cf2�g

(
�f1

f2
xi,�f1

f2
yi

)

The output image is therefore f2/f1 times the input image and is inverted. The
amplitude of the output image is �f2/f1 times that of the input image. The minus
sign in the amplitude means the phase of the output light is reversed from that of
the input, but human eyes, which are sensitive only to intensity, cannot recognize
this. Recall that the magnified image from a single lens expressed by Eq. (1.151)
has a quadratic phase factor. This quadratic phase factor can be eliminated with
the two-lens arrangement.

1.10 (a) The case of the opaque dot: The field distribution at the back focal plane of
lens L2 is

ej2kf

j�f2

[
υ

(
x

�f2

)
υ

(
y

�f2

)
C j

(
x

�f2
,
y

�f2

)]

where

 D Ff�g

With the opaque dot, the first term is removed. The second term is further
Fourier transformed by L3, and the field on the screen is

�ej4kf
(
f2

f3

)
j�

(
�f2

f3
xi,�f2

f3
yi

)

and the intensity pattern is

Ia�xi, yi� D
(
f2

f3

)2

�2
(

�f2

f3
xi,�f2

f3
yi

)
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(b) The case of �/2-radian phase plate: The field distribution just after the phase
plate in the back focal plane �x, y� of L2 is

ej2kf

j�f2

[
ej�/2υ

(
x

�f2

)
υ

(
y

�f2

)
C j

(
x

�f2
,
y

�f2

)]

The field on the screen after the second lens L3 is

�ej4kf f2

f3

[
jC j�

(
�f2

f3
xi,�f2

f3
yi

)]

The intensity distribution is

Ib�xiyi� D
(
f2

f3

)2 [
1 C �

(
�f2

f3
xi,�f2

f3
yi

)]2

'
(
f2

f3

)2 [
1 C 2�

(
�f2

f3
xi,�f2

f3
yi

)]

(c) Comparing Ia and Ib: While case (a) provides �2, case (b) provides 1 C 2�.
The result of case (b) is linear with � and a more truthful representation
and more sensitive when j�j2 < 1.

1.11 If the card of encryption is n�x, y�, that of decryption has to be n�1��x,�y�.
The phase distribution of a convex lens is

n�x, y� D e�jk�x2Cy2�/2f0

Thus

n�1��x,�y� D ejk�x
2Cy2�/2f0

which is the transmission coefficient of a concave lens of focal length f0.

1.12

g�r, �� D

 1 b < r < a,

�

c
� � � � � �

c
, and � C �

c
� � � 2� � �

c

0 elsewhere

gn�r� D 1

2�

∫ ���/c

�/c
g�r, ��e�jn� d� C 1

2�

∫ 2���/c

�C�/c
g�r, ��e�jn� d�

D �1

n�
[1 C ��1�n] sin

(n�
c

)
�1�

gn�r� D




1 � 2

c
n D 0

� 2

n�
sin
(
n
�

c

)
n D even

0 n D odd
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The Fourier–Hankel transform is calculated from Eq. (1.61) and Eq. (1):

G�*, �� D 2�
(

1 � 2

c

)∫ a

0
rJ0�2�*r� dr

�
∑

n D �1
n D even

except n D 0

��j�nejn�
(

4

n

)
sin
(n�
c

) ∫ a

b
rJn�2�*r� dr

With the relationship

J�n�x� D ��1�nJn�x�

G�*, �� becomes

G�*, �� D 2�
(

1 � 2

c

)∫ a

0
rJ0�2�*r� dr

C
1∑
mD1

��1�mC1 4j

m
sin�2m�� sin

(
2m
�

c

) ∫ a

b
J2m�2�*r� dr

or

G�*, �� D
(

1 � 2

c

)(
a

*
J1�2�*a�� b

*
J1�2�*b�

)

C
1∑
mD1

��1�mC1 4j

m
sin�2m�� sin

(
2m
�

c

) ∫ a

b
J2m�2�*r� dr

For large c and small b, G�*, �� approaches the value of a complete circular
aperture.

1.13 The transmittance of the hologram is

t�x, y� D jOj2 C jRj2 C ORŁ C OŁR �1�

where t0 and ˇ are suppressed. According to the geometry for fabricating the
hologram, the expressions for O and R are

O�x, y� D A

j�d0
ejk[d0C�x2Cy2�/2d0] �2�

R�x, y� D R0e
�jkx sin � �3�

According to the geometry for reconstructing the image, we can express the
reconstruction beam P as

P�x, y� D P0e
jkz �4�



562 ANSWERS TO PROBLEMS

Reconstruction of the virtual image is, from the third term of Eq. (1),

E3�xi, yi� D AR0P0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0

ð F
{
ejk�x

2Cy2�/2D Ð ejkx sin �
}
fxDxi/�zi,fyDyi/�zi

�5�

where

1

D
D 1

d0
C 1

zi
�6�

Using Eqs. (1.43) and (1.110), the result of the Fourier transform is

E3�xi, yi� D AR0P0
ejk[ziCd0C�x2

i Cy2
i �/2zi]

j��zi C d0�

Ð
{
e�j��D[�fx�sin �/��2Cf2

y ]
}
fxDxi/�zi,fyDyi/�zi

�7�

Insertion of fx D xi/�zi, fy D yi/�zi provides

E3�xi, yi� D AR0P0
ejk�ziCd0�

j��zi C d0�
Ð exp

{
j
k

2

[
x2
i C y2

i

zi

(
1 � D

zi

)

C2
D

zi
xi sin � � D sin2 �

]}
�8�

E3�xi, yi� D AR0P0

j��zi C d0�
exp
[
jk

(
�zi C d0�C 1

2�zi C d0�
[�xi C d0 sin ��2

Cy2
i � d0�d0 C zi� sin2 �]

)]
�9�

The last term in the exponent is an aberration term that is small when either
zi � �d0 or � � 0. The virtual image is at a distance z D zi C d0 from the
observer and is laterally shifted by �d0 sin � in the xi direction.
Next, the real image is considered using the fourth term of Eq. (1):

E4�xi, yi� D AR0P0
ejk[zi�d0C�x2

i Cy2
i �/2zi]

j�zi

1

j�d0

ð F
{
ejk�x

2Cy2�/2D0 Ð e�jkx sin �
}
fxDxi/�zi,fyDyi/�zi

�10�

where

1

D0 D 1

zi
� 1

d0
�11�
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Replacing D by D0 and jkx sin � by �jkx sin � in Eq. (8), E4�x3, y3� is obtained
directly as

E4�x4, y4� D AR0P0

��zi � d0�
exp
[
jk

(
�zi � d0�C 1

2�zi � d0�
[�xi C d0 sin ��2

Cy2
i � d0�d0 � zi� sin2 �]

)]
�12�

The results are summarized in Fig. A1.13.

Real and
Pseudoscopic
image

Virtual and
orthoscopic
image

O(x0,y0)

−q

−q

q

Hologram

Hologram

Object

Reference beam

(a)

(b)

0 z

d0

d0 d0

Reconstruction beam

z

Figure A1.13 Location of the reconstructed images. (a) Fabrication of hologram. (b) Reconstructing
the images.
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Chapter 2

2.1 From Eqs. (2.2), (2.31), and (2.32),

01H1 cos �1 � 01H3 cos �3 D 02H2 cos �2 �1�

H1 CH3 D H2 �2�

Equation �1�C Eq. �2� (01 cos �3� gives

H2

H1
D 201 cos �1

01 cos �1 C 02 cos �2

tjjH D 2n2 cos �1

n2 cos �1 C n1 cos �2
6D tjjE

Similarly, Eq. (1) � Eq. (2) (02 cos �2� gives

rjjH D n2 cos �1 � n1 cos �2

n2 cos �1 C n1 cos �2
D rjjE

2.2 Snell’s law changes Eq. (2.35) to

rjj D E3

E1
D sin �1 cos �1 � sin �2 cos �2

sin �1 cos �1 C sin �2 cos �2

which can be further rewritten as

rjj D sin �1 cos �1�cos2 �2 C sin2 �2�� sin �2 cos �2�cos2 �1 C sin2 �1�

sin �1 cos �1�cos2 �2 C sin2 �2�C sin �2 cos �2�cos2 �1 C sin2 �1�

D �cos �1 cos �2 � sin �1 sin �2��sin �1 cos �2 � cos �1 sin �2�

�sin �1 sin �2 C cos �1 cos �2��cos �1 sin �2 C sin �1 cos �2�

D cos��1 C �2� sin��1 � �2�

sin��1 C �2� cos��1 � �2�

Thus,

rjj D tan��1 � �2�

tan��1 C �2�

2.3 In the case of perpendicular polarization, E fields are parallel to the interface.
They are identical with the tangential component of the field and r? C 1 D t?.

In the case of parallel polarization, the E field is not identical with the tangen-
tial component. Only a fraction of the E field is tangential to the interface. The
tangential components satisfy the continuity condition while the E field itself
does not. Hence, rjj C 1 6D tjj is true except in the case of normal incidence.
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2.4 (a) From Eqs. (2.42) and (2.56), R? is

R? D r2
? D sin2��1 � �2�

sin2��1 C �2�

D �sin �1 cos �2 � cos �1 sin �2�2

sin2��1 C �2�

From Eqs. (2.44) and (2.55), T? is

T? D n2 cos �2

n1 cos �1
Ð 4 cos2 �1 sin2 �2

sin2��1 C �2�

With Snell’s law, T? is rewritten as

T? D 4 sin �1 cos �1 sin �2 cos �2

sin2��1 C �2�

and hence,

R? C T? D 1

(b) From Eqs. (2.43) and (2.56), Rjj is

Rjj D r2
jj D tan2��1 � �2�

tan2��1 C �2�

D [cos��1 C �2� sin��1 � �2�]
2[sin��1 C �2� cos��1 � �2�]

�2

Thus,

Rjj D �sin �1 cos �1 � sin �2 cos �2�2

[sin��1 C �2� cos��1 � �2�]2

From Eqs. (2.45) and (2.55), Tjj is

Tjj D n2 cos �2

n1 cos �1

(
2 cos �1 sin �2

sin��1 C �2� cos��1 � �2�

)2

With Snell’s law, Tjj is rewritten as

Tjj D 4 sin �1 cos �1 sin �2 cos �2

[sin��1 C �2� cos��1 � �2�]2

Rjj C Tjj D �sin �1 cos �1 C sin �2 cos �2�2

[sin��1 C �2� cos��1 � �2�]2

D
{ 1

2 �sin 2�1 C sin 2�2�
}2

[sin��1 C �2� cos��1 � �2�]2

D [sin��1 C �2� cos��1 � �2�]2

[sin��1 C �2� cos��1 � �2�]2
D 1
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2.5 The condition for r? to be zero is �1 D �2, but due to Snell’s law if n1 6D n2, �1

can never be equal to �2.

2.6 When the angle of incidence is 57°, the light that is polarized in the plane of
incidence is at Brewster’s angle. Only the light that is polarized perpendicular to
the plane of incidence (or perpendicular to the page) is reflected by G1. The light
then reaches G2 resulting in l0.

By rotating G2 by 90° this light polarized perpendicular to the plane of inci-
dence also satisfies Brewster’s angle and is not reflected by G2.

2.7

n2 sin �1 D sin �2

nx D n2 sin�90° � �1� D n2 cos �1

Eliminate �1 from the above two equations to obtain

nx D
√
n2

2 � sin2 �2

Pulfrich’s refractometer is widely used for measuring the index of refraction of
fluid.

2.8

�n1k�
2 cos2 �1 � �n2k�

2 cos2 �2 D (n2
1 � n2

2

)
k2

�n1k�
2�1 � sin2 �1�� �n2k�

2�1 � sin2 �2� D (n2
1 � n2

2

)
k2

Thus,

k
(
n2

1 sin2 �1 � n2
2 sin2 �2

) D 0

Chapter 3

3.1 The concentric fringe rings on the screen in Fig. 3.10 become blurred. The x � z
plane cross section of the cone shape is shown in Fig. A3.1.

3.2 Note from Eq. (3.66) that the measured quantity d1 is augmented by m1 times
and the accuracy of the method in Section 3.4.3 is m1 times higher than the
method proposed in this problem.

3.3 From Eq. (3.70), �/� is

�

�
D d2 �d1

d2 � d1
D 0.1441 � 0.0829

300

D 2.040 ð 10�4

The frequency of the He–Ne laser light is

3 D c

�
D 3 ð 1014

0.6328
D 4.741 ð 1014 Hz
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x

Very near Very far

z

With lens

Without lens

q2

q1

Figure A3.1 Solution of Problem 3.1.

Since
3

3
D �

�

the modulation frequency is

3 D �

�
3 D �2.040 ð 10�4��4.741 ð 1014�

D 96.71 GHz

3.4 (a)

dmC1 � dm D �

2
� D 2�dmC1 � dm� D 2�0.42� D 0.84 µm

(b)

m
�

2
D d

m D 2
d

�
D 2�420�

0.84
D 1000
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(c)

3 D d1

d2
3FSR

D d1

d2

c

2d
D �0.1��3 ð 1014�

�0.42��2��420�

D 85 GHz

3.5

r D f sin �i

�i D sin�1
(
r

f

)
D sin�1

(
5.29

50

)
D 6.07°

sin �i D n2 sin � D 1.05 sin �

� D 5.78°

Note that

2n2 d D m�

2n2 d cos � D �m � 1��

∴� D 2n2 d�1 � cos ��

D 2�1.05�60�1 � cos 5.78°�

D 0.64 µm

3.6 The output intensity from the Fabry–Pérot cavity is, from Eq. (3.30) with A D 0,

It D I0
1

1 CM sin2 �/2

where

� D 4�3

c
d

At the resonance length

L D m�/2

When the length of the cavity is enlongated by L from the resonance length,

d D m�/2 CL

L that reduces the output to one-half of the value at the resonance is

1 D M sin2
[

1

2

(
4�3

c

)(
m
�

2
CL

)]

D M sin2
(�
�
L
)
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L � �

�
p
M

D �

2

1

F

L

L
D �

2FL
D 1.064 ð 10�6

2�516��300�
D 3.4 ð 10�12

3.7 Using the parameters in Fig. A.3.7, z0/f D 0.5. From Table 3.2 or from
Figure A.3.7, M D 1.8, W1 D 0.18 mm, d1 D 18 cm, z1 D 160 mm, and �1 D
0.063°.
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2.0
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0.5

0.25

0.1

M

0.1

= 0
f
z0

= 0
f
z0

d1
f

− 1

d0
f

− 1

d0
f

− 1

Figure A3.7 Values of M and d1/f � 1 from the graphs.
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3.8 (a) Using Eqs. (3.118) and (3.119), �d1 � f� in Eq. (3.117) is converted into
�d0 � f�, and �d0 � f� in the same equation is converted into �d1 � f�;
then the expression for d0 in terms of f, d1 and z1 is

d0 � f D f2�d1 � f�

�d1 � f�2 C z2
1

D 102�3.6 ð 106�

�3.6 ð 106�2 C
[(

�

0.63 ð 10�6

)
�1�2
]2

D 9.5 µm

d0 D 10 m C 9.5 µm

From Eqs. (3.116) and (3.118),

W0 D 1

√
9.5 ð 10�6

3.6 ð 106

W0 D 1.62 µm

(b) When the distance is large compared to the beam waist, Eq. (3.106) and
Fig. 3.25 give

lim
z!1 tan � D 2

kW0

2

kW0
' 1

3.6 ð 106

W0 ' 3.6 ð 106(
�

0.63 ð 10�6

)
W0 ' 72 cm

3.9 If the beam is unfolded with respect to the plane mirror, then the problem
becomes the same as the two concave mirror cavity with spacing 2d in place
of d. From Eqs. (3.151) and (3.153),

W2
1 D 2Rc

k

√
Rc
d

� 1

W2
0 D 2d

k

√
Rc
d

� 1

The same result can be obtained from the boundary conditions directly. Referring
to Fig. P3.9 the phase of the waist matches that of the flat mirror. The flat mirror
is placed at z D 0 or at the waist and the concave mirror is placed at z D d.
At resonance, the radius of curvature R of the beam has to be matched with
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the radius of curvature Rc of the mirror. The phase of the waist matches the
flat mirror. Equation (3.100) gives the relationship among them. Insert W2

0 of
Eq. (3.100) into (3.96) to obtain

1 C
(

2Rc
kW2

1

)2

D Rc
d

which leads to

W2
1 D 2Rc

k

√
Rc
d

� 1

3.10 The propagation constant ˛ is, from Eq. (3.171),

˛ D k sin �

The value of � is determined by the size of the annular slit and the focal length as

tan � D a

f

If � is small, then sin � � tan � and from the above two equations

˛ D 2�a/�f

The first zero of the main lobe appears when

˛* D 2.4

and

* D 0.38�f/a

Thus, the focal length f of the lens is

f D *a

0.38�
D �60 ð 10�6��2.5 ð 10�3�

�0.38��0.63 ð 10�6�

D 62.7 cm

The radius R of the lens is, from Eq. (3.173),

R D zmax
a

f
D �1�

2.5 ð 10�3

�0.627�

D 4.0 mm

3.11 On the white side of the fin, a photon bounced off the surface changes its
momentum from p to �p and the amount of change in momentum is 2p, while
on the black side, the photon is absorbed and the change of the momentum is
from p to 0 and the amount of change is p. It should rotate toward the black side
of the fin. Crook’s radiometer rotates in the opposite direction. It is propelled
by the heat expansion of the gas on the black side.
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3.12 When a photon collides, the momentum is changed from p to �p. The change
of momentum is 2p. From Eq. (3.199), the pushing force is

F D 2qn1
P

c

where q is the fraction of light effectively reflected back.

(a) F D 2�0.07��1.43�
1

3 ð 108
D 6.67 ð 10�10 newtons

(b) The mass of the sphere is

m D 4
3�r

3 D 4
3��0.5145 ð 10�4 cm�3 ð 10�3

D 5.7 ð 10�16 kg

The acceleration is

dv

dt
D F

m
D 6.67 ð 10�10

5.7 ð 10�16
D 1.17 ð 106 m/s2

(c) The gravitational acceleration is

g D 9.8 m/s2

The ratio is

dv/dt

g
D 1.2 ð 105 times

3.13 As shown in Fig. A3.13, the direction is toward the focused beam.

a

a
a′

a′

b

b
b′

b′

Fa

Ca Cb

Fb

F

Focus

Convex
lens

Figure A3.13 Laser radiation pressure on a convex lens.
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Chapter 4

4.1 Inserting Eq. (4.61) into (4.62) gives

k2
x

(
1

n2
o

� 1

n2
e

)
D 0

(a) kx D 0 together with the original assumption ky D 0 means that the propaga-
tion vector k is along the z axis ( or the optic axis).

(b) no D ne means that the medium is isotropic.

4.2 

k2

0n
2
˛ � k2

y � k2
z kxky kxkz

kykx k2
0n

2
ˇ � k2

x � k2
z kykz

kzkx kzky k2
0n

2
; � k2

x � k2
y




ExEy
Ez


 D 0

where k0 D ω/c.

4.3 (a) The answer is given in Fig. A4.3a.

(b) The answer is given in Fig. A4.3b. It should be realized that the critical angle
from the left is different from that from the right. There are two intersections

z

C2

C1

x

T
S

0

s1

k1

s2

Crystal 2

Crystal 1

k2

P

P ′
A

h

h

A ′

(a)

Figure A4.3 Answers to Problem 4.3. (a) Refraction at the boundary of uniaxial media. (b) The
condition for total internal reflection at the boundary between uniaxial media. (c) Direction of the
reflected ray.
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C2

C1

0

s1

s3

k3

h

z

x

k1

A

neff 1

neff 3

A′

1

Crystal 1

Crystal 2 h

(b)

C2

C1

neff3

neff1

0

s1

s3

k1

k3

P

P ′

R ′
T

SR

(c)

Figure A4.3 (Continued)
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A and A0 with the indicatrix, which are not symmetric with respect to the
normal to the boundary, and the critical angle from the left side is different
from that from the right.

(c) Referring to Fig. A4.3c, draw tangent PP0 at P0. The line normal to PP0 is
k1. The line 0R, which is perpendicular to k1, represents neff1 . From R, line
RR0 is drawn parallel to the boundary until it intersects with the indicatrix at
R0. 0R0 represents neff3 . The normal to 0R0 is k3. (Thus far, this discussion
duplicates the discussion connected with Fig. 4.17.) The point of contact T
to the indicatrix that the tangent ST makes determines the direction s3 of the
reflected light ray.

4.4 The answer will be given by referring to Fig. A4.4. The critical angle �ac between
air and the LiNbO3 interface is first calculated.

The point where the horizontal line a–a0 at a distance h D 1 from the boundary
intersects the ellipse determines neff3 at the critical angle. Equation (4.101) is used
for calculating neff3 D k/k0, but keep in mind that angle � in Eq. (4.101) is the
angle with respect to the optic axis of crystal. The optic axis of our crystal is
horizontal. Put � D 90° C �c and h D neff3 sin �c.

air

Core

C axis

h

1
h

a

k

k

sa′

2,200

Substrate

LiNbO3

LiTaO3

2.286°

 25.09°

no = 2.286

no = 2.176

ne = 2.200

ne = 2.180

fa = 25.09°
ce

fs
ce = 71.50°

fs
co = 72.15°

fa = 25.94°co

71.50°

72.78°
2.286

neff

2.180

h

2.200

2.176

s

26.82°

Figure A4.4 Examination of critical angles at the boundaries of an anisotropic optical guide.
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h D sin �c[(
cos �c
ne

)2

C
(

sin �c
no

)2
]1/2

which can be solved for sin �c as

sin �c D h/ne[
1 C h2

(
1

n2
e

� 1

n2
o

)]1/2

Note that this expression is different from Eq. (4.112). Equation (4.112) applies
when the crystal axis is normal to the interface. Inserting the given values, �c of
the wavenormal at the critical angle is calculated as

�c D 26.82°

The direction � of the light ray of the e-wave is obtained from Eq. (4.56).
Again, the angles in Eq. (4.56) are with respect to the optic axis, which means
� D 26.82° C 90° and

�ace D 25.09°

where �ace is referred to the normal to the interface. The critical angle of the
o-wave is simply

no sin�aco D 1

and

�aco D 25.94°

The difference in critical angle between the o- and e-waves is 0.88°.
Next, the critical angle between LiNbO3 and LiTaO3 is calculated. The maximum
value of h associated with the interface is h D 2.174. Hence, �c from the above
expression is

�c D 72.78°

Once again, the angles in Eq. (4.56) are with respect to the optic axis, which
means that � D 72.78° C 90°. From Eq. (4.56), we find

�sce D 71.50°

where �sce is referred to the normal to the interface. The critical angle of the
o-wave is

sin�sco D 2.176

2.286
, �sco D 72.15°

The difference in the critical angles between the o- and e-waves is 0.65°. The
answers are summarized in Fig. A4.4.



ANSWERS TO PROBLEMS 577

4.5 (a) As shown in Fig. 4.12 as well as in Fig. A4.5a, by the time the wavefront of
D reaches point P, the wavefront of E reaches point P0; thus,

v D u cos ; �1�

where v and u are the phase and ray velocities of the e-wave, respectively.
; is the angle between s and k, which is the same as that between E and D.

The left-hand side of Eq. (4.82) is the projection of E onto D and is
rewritten as

E cos ; D
(v
c

)2 D

@0
�2�

Inserting Eq. (1) into the right-hand side of Eq. (2) gives

D

@0E
cos ; D

( c
u

)2
�3�

With the relationship

cos ; D E Ð D
ED

�4�

Equation (4) is written as

n2
oE

2
x C n2

eE
2
z

E2
D
( c
u

)2
�5�

where use was made of Eq. (3).
Note from Fig. A4.5a that

Ex
E

D � cos�,
Ez
E

D sin� �6�

cos2 �

v2
o

C sin2 �

v2
e

D 1

u2
�7�

where

vo D c

no
, ve D c

ne
�8�

Equation (7) is the expression for the ray velocity surface (suppressing the
y components) and is called Huygens’ wavelet ellipsoid. It provides the ray
velocity for a given direction. The ray velocity for � D 0 or along the z
direction is vo, and that for � D 90° or along the x direction is ve. In other
words, when the wave propagates along the z axis, D is in the x direction
and sees the index of refraction no; and when the wave propagates along the
x axis, D is in the z direction and sees the index of refraction ne. The index
of refraction is determined by what D sees.
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Figure A4.5 (a) Phase velocity v and ray velocity u of the e-wave. (b) Ray velocity matching for SHG.
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Equation (7) immediately provides an expression for the wavelet spread
in terms of spatial coordinates. Multiplying Eq. (7) by the distance r from
the origin to the point of observation gives(

x

ve

)2

C
(
z

vo

)2

D t2 �9�

Equation (9) is the expression for an ellipse whose x axis is vet and z axis is
vot, both of which expand with t.

(b) As shown in Fig. A4.5b, the ray velocity diagram of the fundamental wave
(o-wave) is overlayed with that of the second harmonic (e-wave). The
intersection of the two diagrams is the optimum ray velocity direction for
the SHG.

4.6 As the direction of the propagation is tilted from the z axis in the x � z plane,
the length of the major axis 0P of the elliptic cross section moves along the
circumference of the ellipse made with y D 0 in Eq. (4.84). 0P of such an ellipse
can be found by replacing

x D r cos �

z D r sin �

y D 0

in Eq. (4.84): (
cos �

n˛

)2

C
(

sin �

n;

)2

D 1

r2

The angle � is obtained by inserting

r D nˇ

A method for experimentally finding the optical axes can be found in Ref. 15
in Chapter 4.

Chapter 5

5.1 It is seen from Eq. (5.10) that with ε D εz one can take advantage of the large
r33 of lithium niobate. The equation of the indicatrix, Eq. (5.4), becomes(

1

n2
o

C r13εz

)
x2 C

(
1

n2
o

C r13εz

)
y2 C

(
1

n2
e

C r33εz

)
z2 D 1

which can be approximated as

x2

�no � 1
2r13n3

oεz�
2

C y2(
no � 1

2r13n3
oεz
)2 C z2(

ne � 1
2r33n3

eεz
)2 D 1

Maximum retardation is achieved when light propagates in the x � y plane. The
amount of retardation is similar for any propagation direction in the x � y plane.
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For k D ky ,

 D 2�

�
�ne � no� dC �

�

(
n3
or13 � n3

er33
) V
h
d

The first term is independent of the applied dc field and is called the natural
birefringence, whereas the second term is the induced birefringence.

5.2 The linear portion of the I versus  curve is located at the point where dI/d
is constant. Therefore, the good biasing point is where d2I/d2 D 0 is satisfied.
Insertion of Eq. (5.29) into this equation leads to

b D �

2

The retardance  is the sum of the bias term b and the modulated term m:

 D �

2
Cm

With the assumption that m is much smaller than �/2, and using the
trigonometric relationship sin2 A D 1

2 �1 � cos 2A�, Eq. (5.29) is approximated as

I D I0

2
�1 Cm�

where

m D �2�

�

(
r22n

3
oεm cosωmt

)
h

5.3 From Eq. (5.10) and ε D �εx, εy, 0�, the expression of the indicatrix is obtained.
Since the direction of the propagation is along the z direction, the cross-sectional
ellipse is (

1

n2
o

� r22εy

)
x2 C

(
1

n2
o

C r22εy

)
y2 � 2r22εxxy D 1

The major and minor axes of this expression are immediately obtained by using
the results of Example 5.4. Insertion of

A D 1

n2
� r22εy

C D 1

n2
C r22εy

B D �r22εx

into Eq. (5.35) gives

tan 2� D εx
εy

Let  be the angle between the resultant electric field and the x axis. Then  is
expressed in terms of εx and εy as cot D εx/εy . Using the identity

cot D tan
(�

2
�

)
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� becomes

� D �

4
� 

2

If the external field is a rotating field at  D Ct, the axis of the ellipse rotates
in the opposite direction at one-half of the angular velocity C:

� D �

4
� C

2
t

This fact is used for building a frequency shifter.

5.4 The two beams are

R D R0e
j�kxxCkzzC �

S D S0e
j��kxxCkzz�

0

1

2

0

1

2

0

1

2

l/4

l

l

y = −p/2

y = p/2

y = 0

l/2 x

I

Figure A5.4 Intensity distributions I D 2[1 C cos�2kxx C  �] for  D 0, �/2,��/2 radians.
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With R0 D S0 D 1, the fields on the z D 0 plane are found:

RC S D ej /2�ej�kxxC /2� C e�j�kxxC /2��

D 2ej /2 cos�kxx C  /2�

jRC Sj2 D 4 cos2�kxx C  /2�

I D 2[1 C cos�2kxx C  �]

The intensity distributions for  D 0, �/2,��/2 are shown in Fig. A5.4.

5.5 Extending the vector diagram in Fig. 5.21 to the case where  D ��/2, one finds
that energy transfers from S�x� to R�x�.

5.6 See Fig. A5.6.

90° TN cell

PBS

90° Prism

90° Prism

PBS

On

Incident
light

90° TN cell

PBS

PBS

Off

Incident
light

Figure A5.6 Light paths when the switch is on and off.
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Chapter 6

6.1 Let

E� D e�jωtCjˇz

EC D ejωt�jˇz

Let the plane of observation be z D 0. The phasor circles C1 and C2 of E� rotate
clockwise, while those of EC rotate counterclockwise. The 90° phase delay of
the retarder is represented by

E�y D e�jωtCj90°

ECy D ejωt�j90°

3

3

3
C1

C2

1

1

4

4

2

2

2

1

4

90° delay

F

P
S

3

3

3
C1

C2

1

1 (a) E− = e−jwt + jbz convention

(b) E+ = e jwt − bz convention

4

2

2

4

2

1

4

90° delay

F

P
S

3

1

30°

Figure A6.1 A difference in convention does not affect the final results.
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The ellipses using these two different conventions are drawn in Fig. A6.1. The
same final results are obtained.

6.2 The solution is obtained by the circle diagram as shown in Fig A6.2. From the
diagram

�2 D 68° and @ D 0.31

Ey

P

144

3

3
Ex

1

2

4

2

O

1

3 2

68°

315°
63.4°

c1

c2

Figure A6.2 Circle diagram with �1 D 63.4°�B/A D 2� and  D 315°.

6.3 The results are summarized in Fig. A6.3. As expected from the answer of
Example 6.1, the major or minor axis is always along the fast axis, which is a
characteristic of the combination of a linearly polarized wave and the quarter-
waveplate.

When Ex and Ey of the incident linear polarization have the same sign, the
result is left-handed rotation or counterclockwise rotation, whereas when Ex
and Ey have opposite signs, the result is right-handed or clockwise rotation, as
summarized in Fig. A6.3b.
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4
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(a)

3
3
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00

1

45

56
6

7
7
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8

(b)

Figure A6.3 Transitions of the state of polarization as the azimuth of the incident linearly polarized
wave is rotated. The fast axis of the �/4 plate is along the x direction.

6.4 Referring to Fig. A6.4, point 1 on the major axis of the ellipse corresponds to
the 1’s on the circles C1 and C2. The phasor of C2 is delayed from that of C1

by 90°.

6.5 The result by the circle diagram method is shown in the dotted line in Fig. A6.5.
The change of the sense of rotation makes a significant change in the state of
polarization of the emergent light.

6.6 For k1 D 1 and k2 D 0, the direction of polarization of the emergent light from
the stacked polarizers is always in the azimuth direction of the last polarizer.

(a) � D �2.

(b) � D �1.

6.7 The horseshoe crab sees linear polarization when it is oriented in a north–south
direction. When it is oriented in other directions, the polarization is elliptical.



586 ANSWERS TO PROBLEMS

3
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4

4
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E 02
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C2

E01
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Figure A6.4 When an elliptically polarized wave is decomposed into parallel and perpendicular
components, there is a 90° phase difference between the components.

To face north (or south) it turns its body until linear polarization is sensed. This
can be seen from Fig. 6.33 by making these substitutions: the observer is the
horseshoe crab, the light source is a ray of sunlight, and the scattering center is
a particle in the water. The direction of linear polarization is perpendicular to
the plane containing the horseshoe crab, the ray of sunlight, and the scattering
center. The horseshoe crab sees vertically linearly polarized sunlight.

6.8 Because of the optical activity, the direction of polarization rotates. Wherever
the light is horizontally polarized, no scattered light propagates horizontally
because the direction of the E field becomes parallel to the direction of
propagation. This happens every 180° of rotation. If the rotary power of quartz is
[�]20°C

0.63 µm � 19.5 deg/mm, the period of modulation is L D 180/19.5 D 9.2 mm.

6.9 Since d1 > d2, the retardance is dominated by the anisotropy of the crystal with
d1. Since the emerging light is left-handed, the polarization direction of the
incident light has to be to the left of the fast axis. In other words, the fast axis is
to the right of the polarization direction of the incident wave, which means the
fast axis is along the optic axis in crystal d1. The refractive index in the direction
of the optic axis is ne, while the refractive index in the direction perpendicular
to the optic axis (y direction) is no. Hence,

ne < no

and the crystal is classified as negative, as mentioned in Chapter 4.
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Figure A6.5 Same configuration as that shown in Fig. 6.10 but with the opposite handed rotation of
the incident wave.

6.10 Insert the retarder in question between a pair of crossed polarizers. This
configuration is illustrated in Fig. 6.38 with the retarder as the inserted optical
element. As a precaution, if the incident wave happens to be linearly polarized,
check that at least some of the incident light is getting through the first polarizer.
The situation where no light passes through the first polarizer is to be avoided.

Null output from the second polarizer is obtained only when the fast and
slow axes of the retarder match the direction of the polarizer principal axes.
Determining which axis is the fast axis, and determining the actual value of the
retardance can be done by Senarmont’s method (see Section 6.4.3.3).

6.11 First, the solution is obtained by circle diagrams. Partition the retardance in
equal proportions between the Ex and Ey component fields. If  D 0, delay Ey
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Figure A6.11 Circle diagrams. (a) Point 1 on phasors representing point B on the ellipse. (b) Point 4
on phasors representing point C on the ellipse.
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by /2 while advancing Ex by /2, and draw circle diagrams as shown in Fig.
A6.11(a). Points 1 on C1 and C2 are extended to point B on the ellipse. Point 4
on C1 and C2 is extended to point C on the ellipse. If we find the lengths 0B
and 0C on the ellipse in terms of , the angle 6 ABC can be found in terms of
. From the diagram in Fig. A6.11a, we have

BH D a cos


2

As we learned from Fig. 6.4, the major and minor axes are at either � D 45° or
� D 135°, when B/A D 1, and

0B D
p

2 a cos


2

From the diagram in Fig. A6.11b, we have

CH D a sin


2

0C D
p

2 a sin


2

From the above two values, tanˇ is expressed as

tanˇ D 0C

0B
D tan



2

Finally,

2ˇ D 

Next, the result is obtained simply using Eq. (6.127) with � D 45°. The answer
is 2ˇ D .

6.12 (a) Note from Eqs. (6.95) and (6.98) that

tan 2˛ D 2AB

A2 � B2

Use of Eq. (6.99) to find cos 2� to put into Eq. (6.123) leads to

�a2 � b2� sin 2� D 2AB cos

(b) Applying the identity

cos 2˛ D 1 � tan2 ˛

1 C tan2 ˛

to Eq. (6.91) gives

cos 2˛ D A2 � B2

A2 C B2
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Using Eq. (6.123) to find a substitute for the numerator in the above
expression gives the result

�a2 � b2� cos 2� D �A2 C B2� cos 2˛

Chapter 7

7.1 The diagram is shown in Fig. A7.1. The emergent wave is a right-handed
elliptically polarized wave with

@ D 0.2 and � D 80°

∆

R 45°

80°

22.5°

P2

P1

V H

N

S

Equator
3

1

Figure A7.1 Solution of Problem 7.1.

7.2 The answers are shown in Fig. A7.2.

7.3 Figure A7.3 shows the geometry of the antiglare screen. Incident white light is
first converted into a vertically polarized wave, which can be represented as P1

on the Poincaré sphere. The azimuth  of the fast axis of the �/4 sheet is 45°,
which is represented by R on the Poincaré sphere. The incident point P1 is rotated
by 90° around R to P2 at the north pole. Thus, the incident wave to the radar
screen is a left-handed circularly polarized wave.

The radar screen reflects the incident light. The direction of rotation of the
reflected circularly polarized wave is the same as that of the incident wave on
the radar screen, but the direction of the propagation reverses and the reflected
light looking toward the radar screen from the operator is right-handed. It is
represented by the south pole on the Poincaré sphere.
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Figure A7.2 (a) Three different azimuths of incident light for a fixed �/4 plate. (b) Three different
azimuths of the fast axis of �/4 plate for a fixed incident light.
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Figure A7.3 Polarization stages of an antiglare sheet plotted on the Poincaré sphere.

The azimuth of the fast axis of the same �/4 sheet now appears at  D 135°.
The reflected light P0

1 is rotated by 90° around R0 at � D 135° to generate a
horizontally linearly polarized wave, and the reflected light is blocked by the
analyzer.

Light originating from the radar screen is attenuated but reaches the operator.

7.4 Point P1 of the incident light with � D 45° is at the midpoint between points H
and V, and P1 appears on the circumference of the circle made by the projection
of the Poincaré sphere along the HV axis, as shown in Fig. A7.4.
Point P2 of the emergent light with ˇ is at the latitude of 2ˇ on the Poincaré
sphere.

6 P1CP2 D  and  D 2ˇ

7.5 Projections onto the horizontal, frontal, and profile planes are made. The order
of drawing the points in Fig. A7.5 is:

ž P1 at 2�1 D 126.8° in the H plane.

ž P1 at ˇ D 0 in the F plane.

ž P1 in the P plane.

ž P2 from P1 by  D 315° in the P plane.

ž P2 in the H plane to find 2� D 137°

ž P0
2 rotated from P2 around NS to obtain the true angle 2ˇ D 34°.
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1/2

Geodesic =b

Figure A7.4 Poincaré sphere viewed along the HV axis.

7.6 Follow the steps explained in Example 7.12. Figure A7.6 shows the key
operations. The state of the polarization of the emergent light is left-handed
elliptical polarization with ��, @� D �158°, 0.23�.

7.7 (a) The procedure is similar to that of Problem 7.5. The answers of � D 60° and
@ D 0.31 with left-handedness are verified from Fig. A7.7a.

(b) The transmittance of the analyzer is k D cos2 6 HCP2/2 in the upper right
figure in Fig. A7.7a. The true angle is obtained when P2 is rotated around
the axis CH to the equator, so that 2˛ D 114° and ˛ D 57°. The transmitted
power intensity Pt is

Pt D 00

2
�E2

x C E2
y� cos2 57° D 2.000 W/m2

(c) The answer is in Fig. A7.7b:

2˛ D 74° and k D cos2 ˛ D 0.64

7.8 The operation is quite similar to that of Example 7.13. The major difference is
the bipolar nature of the external field εx. As shown in Fig. A7.8a the solid line
indicates the shape of the indicatrix when the external field is Cεx. The indicatrix
is rotated as shown by the dotted line when the external field is changed to �εx.
The direction of the fast axis rotates by 2�, when the polarity of εx is reversed.
Thus, the azimuth  of the fast axis is alternately at R and R0 on the Poincaré
sphere. The amount of retardance  is the same for both.
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Figure A7.5 Finding � and ˇ Poincaré sphere traces.

With this TE–TM converter, the retardance of the modal retarder is 180° so
that the spiral locus on the Poincaré sphere moves toward point V as the light
passes through the interdigital electrodes, as shown in Fig. A7.8b.

The incident light P1 is first rotated around R by  to P2 by the first conversion
retarder. The first modal retarder rotates point P2 by 180° around the HV axis
to P3. The fast axis of the second conversion retarder, however, is moved to C�
and P3 is rotated around R0 rather than around R by  to P4. The second modal
retarder rotates by 180° from P4 to P5 around point H.
The same procedure repeats, and the point moves toward point V.

7.9 Let the two oppositely propagating beams be represented by

Ex D Aejˇz�jωt

Ey D Be�jˇz�jωt �1�
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Figure A7.6 Solution by Poincaré sphere traces.
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Figure A7.7 Solution of Problem 7.7. (a) Finding � and ˇ by Poincaré sphere trace. (b) Finding the
transmittance of an analyzer with  D 25°.
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Figure A7.8 Solution of Problem 7.8. (a) Indicatrix of the optical guide. (b) Movement of the state of
polarization on the Poincaré sphere.
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Figure A7.9 Polarization grating for laser cooling.

The component field ratio is

Ey
Ex

D e�j2ˇz �2�

where A D B (or ˛ D 45°) is assumed. Equation (2) is equivalent to a retarder
whose fast axis is along the x axis and whose retardance is

 D �2ˇz �3�

The distribution of the state of polarization along the z axis is found using the
Poincaré sphere in Fig. A7.9. P1 represents linearly polarized light with � D 45°

at z D 0. As z is increased P1 rotates by �2ˇz (counterclockwise) on the Poincaré
sphere with point H as its center of rotation. The state of polarization changes
in the following order: linearly polarized at � D 45°, right-handed circularly
polarized, linearly polarized at � D 135°, left-hand circularly polarized, and so
on, at every z D �/8.

Chapter 8

8.1 There is a time lapse G D 2L/c between the two entries of the incident and
reflected waves into the distorting medium. The distortion-free image is recovered
when

�t� D �t � G�
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 D �t���t � G� can be used as a criterion for the quality of the recovered
image:

 D 0[cosωt � cosω�t � G�]

D 1
20 sin�ωG/2� cosω�t � G/2�]

If  is zero, the best image is recovered; that is, when

ω
G

2
D n� or

2L

c
D nT

where T is the period of the fluctuation. This happens when the return-trip time
matches the fluctuation period and the wave sees the same fluctuation on both
trips. The worst case is when

2L

c
D 2nC 1

2
T

The wave that saw the maximum  on the initial trip sees the minimum on the
return trip, and the worst recovery is made.

8.2 (a) Although the atoms are symmetric with respect to position, they are not
symmetric with respect to the polarity of the charges; therefore, the crystal
does not possess inversion symmetry.

(b) The redistributed charges are shown in Figs. A8.2a and A8.2b for E D EOx
and E D �EOx. The amount of polarization is different when the direction
of E is reversed, and the polarization with respect to time is as shown in
Fig. A8.2c.

(c) Since the curve for positive values of PNL is different from that of negative
PNL, the second order nonlinearity can exist. The addition of the fundamental
and the second harmonic in Fig. A8.2d conforms with that in Fig. A8.2c.

8.3 The curve of PNL for the crystal with inversion symmetry should have the same
shape for positive PNL and negative PNL, as indicated in Fig. A8.3a. If the
fundamental and the fourth order harmonic in Fig. A8.3b are added, the result
is as shown in Fig. A8.3c. The shape of positive PNL is not the same as that of
negative PNL and cannot conform with the curve in Fig. A8.3a. Thus, H�4� D 0.

8.4

PNL D Ox@0Hxxxx[A1 cos�k1z � ωt C �1�

C A2 cos�k2z � ωt C �2�C A3 cos�k3z � ωt C �3�]
3 �1�

Put

a D A1e
j��ω1tCk1zC�1�

b D A2e
j��ω2tCk2zC�2� �2�

c D A3e
j��ω3tCk3zC�3�
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Figure A8.2 Proof of nonzero H�2�. (a) Charge distribution for E D E Ox. (b) Charge distribution for
E D �E Ox. (c) PNL as a function of time. (d) Addition of fundamental and second harmonic.
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Time

PNL

0
(a)

Time−−−−

+

−

+

+++ +

Fundamental

Fourth order harmonicP

0
(b)

P(1) + P(4)

(c)
Time0

+

Figure A8.3 H�4� D 0 for a crystal with inversion symmetry.

Then, Eq. (1) becomes

PNL D Ox@0Hxxxx
1
8 �dC dŁ�3 �3�

where

d D aC bC c �4�

which is reduced to

PNL D @0

8
Hxxxx�d

3 C 3d2dŁ C c.c.� �5�
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f113

f1

f221 f332 f331

f2 f3 Frequency

f112 f223

f213f123 f132 , f312 f231 , f321

Figure A8.4 Spectra generated due to H�3� of the optical fiber. For instance, f231 D f2 C f3 � f1.

Frequencies associated with d3 are too high and are out of the range of interest.
Discarding these terms gives

PNL D 3@0

8
Hxxxx�d

2dŁ C c.c.� �6�

Insertion of Eq. (4) into Eq. (6) generates many terms and the calculated result is

8PNL

3@0Hxxxx
D a�jaj2 C 2jbj2 C 2jcj2�

C b�2jaj2 C jbj2 C 2jcj2�
C c�2jaj2 C 2jbj2 C jcj2�
C b2aŁ C c2aŁ C a2bŁ C c2bŁ C a2cŁ C b2cŁ

C bcaŁ C cbaŁ C acbŁ C cabŁ C abcŁ C bacŁ C c.c. �7�

For instance, frequency component of b2aŁ is, from Eq. (2), 2ω2 � ω1 and that
of bcaŁ is ω2 C ω3 � ω1. There are 15 frequencies, of which 3 are redundant in
the last 6 terms, for a total of 12 different frequencies, as shown in Fig. A8.4.

After going through the fiber, the three input frequencies have generated
12 output frequencies. Stimulated Brillouin scattering in the glass is the main
contributor to the third order nonlinearity. This, sometimes, does harm and
creates serious crosstalk problems among highly wavelength division multiplexed
channels and prevents the use of high-intensity light in this type of optical
communication system [25].

8.5 In order to sustain four-wave mixing, both the frequency (Eq. (8.54)) and phase
(Eq. (8.70)) matching conditions must be met. Since all frequencies are identical,
Eq. (8.54) is satisfied. Since the magnitudes of all vector propagation constants
are identical, the tips of the propagation vectors lie on the circumference of the
same circle. The vector k1 C k2 has to be identical to k3 C k4. As shown in
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(a)

(b)

k1 + k2

k3 + k4

k2

k2

k3

k1

k1

k4
k3

k4

O

Figure A8.5 Conditions to sustain four-wave mixing. (a) Phasor diagram of k vectors. (b) Directions
of k3 and k4.

Fig. A8.5, the only possible combination is for k3 to be identical to k1 (or k2),
and for k4 to be identical to k2 (or k1).

8.6 There are six combinations, but two are redundant. There are four different
patterns altogether, as shown in Fig A8.6.

8.7 The first equation is rewritten as

dAp
dz

D ;Ap

with ; D jˇp � ˛. The solution of this equation is

Ap D Ap�0�e
;z
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k2

k1

k3

k2

k4

k1

k2 + k3

k1 + k4

(b)

k1 + k3

k2 + k4

(c)

k3 + k4(d)

k1 + k2(a)

k3

k2

k4

k1

k3 k4

Figure A8.6 Fringe patterns generated by various combinations of two waves.

Next, the other two equations are simplified by letting

As D As0e
;z

Ac D Ac0e
;z

The result is

dAs0
dz

D jKA2
p�0�A

Ł
c0

dAc0
dz

D jKA2
p�0�A

Ł
s0
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A (Einstein’s A coefficient), 842, 900
A mode in a nonlinear layer, 1048
Absorption indicatrix, 400
Acceptor

action in semiconductors, 1153–1155
atoms, 1153
energy level, 1153

Accommodation in eye vision, 93
Acetone (CH3)2CO, 239
Acoustic wave

imaging, 95
surface, 324

Acoustooptic modulator (AOM), 100, 324
surface acoustic wave (SAW), 324
used for holographic video displays, 100

Active layer of laser diodes, 904
gain of, 905
plasma effect of, 944

Adaptive fiber coupler, 517
ADP, see Ammonium dihydrogen phosphate
AFM (atomic force microscope), 160, 161
Ahrens polarizing prisms, 404, 405
Airy pattern, 28

calculation of, 1172
Alcohol C2H5OOH, stimulated Brillouin

scattering of, 512
Al2O3 (aluminum oxide), 681, 894
AlxGa1�xAs (gallium arsenide doped with

aluminum) laser, 895, 949
Alkali metals as cathode materials, 796
Aluminum oxide (Al2O3), 687, 894
AM (amplitude modulation), 919, 1086, 1087
Amino acids, optical activity of, 412
Ammonium dihydrogen phosphate (ADP)

elastooptic properties of, 322
electrooptic properties of, 305, 316, 1018

Ammonium fluoride (NH4F), 158
Amplified signal power, 847
Amplified spontaneous emission (ASE) noise, 838,

847, 856, 864, 866, 868, 870

Amplitude distribution
in coupled slab guides, 646
in slab optical guides, 615, 616

Amplitude modulation (AM), 919, 1086, 1087
Amplitude modulators, 312, 679, 1018
Amplitude shift keying (ASK), 812, 818, 831, 832,

1089, 1095
Analog modulation, 1083, 1134, 1137
Analytic signal, 526, 547, 1022

proof of not being applicable to nonlinear cases,
547, 1022

Angle modulation, 1088, 1092
Angular frequency, 1

convention of, 3, 368
Anisotropic media, 263
Annihilation of negative carriers, 898, 1155
Anomalous dispersion region, 1056, 1066
Antenna radiation pattern, 13, 95

calculated by Fourier optics, 103, 556
visualized by microwave holography, 96

Antiglare sheet, 409
analyzed using Poincaré sphere, 502

Antiglare TV camera, 419
Antireflection (AR) coating, 803, 838, 954
Anti-Stokes radiation, 816
AOM, see Acoustooptic modulator
APC (automatic power control), 952
APD detectors, see Avalanche photodiode
Aperture functions

of rectangles, 20
of triangles, 21
of circles, 25
of delta functions, 28
of shah functions, 30
of SNOM probes, 114, 158
numerical (NA), 151, 693, 694, 701, 703, 706,

770
Apodization of radiation patterns, 22
AR (antireflection) coating, 803, 838, 954
Ar2 (argon) for excimer lasers, 894
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Argand diagram, 459
converted into Poincaré sphere, 469
custom made, 466
how to use, 459, 460
orthogonality between � and � lines, 465
ready made, 460

Argon (Ar2) for excimer lasers, 894
Argon ion (ArC) for gas lasers, 894
Array diffraction patterns, 32

array pattern, 40, 88
element pattern, 38, 40, 88
in thin emulsion, 88
of finite size, 37
of infinite size, 32
of irregular spacing, 36
of regular spacing, 32

Arrayed-waveguide grating (AWG), 673, 674,
1099

Arsenic trisulfide (AsS3), 330
Artificial ruby for solid state lasers, 894
ASE (amplified spontaneous emission) noise, 838,

847, 856, 864, 866, 868, 870
ASK (amplitude shift keying), 812, 818, 831, 832,

1089, 1095
AsS3 (arsenic trisulfide), 330
Asymmetric optical guide, 606, 638
Atomic clock, 255
Atomic force microscope (AFM), 160, 161
Atomic polarization, 265
Autocorrelation, 67, 69

Fourier transform of, 69
Automatic power control (APC), 952
Avalanche effect of APD, 803, 1103, 1159

multiplication factor, 804
Avalanche photodiode (APD), 796, 801, 803, 1085,

1159
excess noise of, 1117
multiplication factor M of, 1118
noise equivalent power (NEP) of, 1117
optimizing gain of, 1148
structure of, 802

AWG (arrayed-waveguide grating), 673, 674, 1099
Axicon, 245
Axis image, 245

b (normalized propagation parameter), 728
B (Einstein’s B coefficient), 843, 899
B mode in nonlinear guides, 1048
ˇ matching, 113
Babinet compensator, 380
Back focal plane, 62, 66, 80
Back projection, 469
Backward pumping of EDFA, 864
Balanced mixer, 814, 1122
Ba2NaNb5O15 (BNN), 1018
Bandgap energy (energy gap), 804, 901, 925, 945,

996, 998
Band-pass optical filter, 747

Band-stop optical filter, 745
Barium titanate (BaTiO3)

photorefractive effect, 332, 337, 511, 517, 521
electrooptic properties, 306, 316

Barricade of current by means of a back-biased p-n
junction layer, 935

Baseband signal, 1085, 1086
Baseline wander of receivers, 1096
BaTiO3, see Barium titanate
BC (buried crescent) laser, 934, 936, 942
BCl3 (boron chloride), 777
Beam pattern of laser diodes, 946
Beam propagation factor m2 of Gaussian beam, 220
Beam radius of Guassian beams, 209
Beam splitter

nonpolarizing, 411
polarizing, 402, 412

Beam waist of Gaussian beams, 208
Beamwidth of laser beams, 948
Beat noise

signal-spontaneous, 870, 871
spontaneous-spontaneous, 870, 871

BeF2, 708
Bend-induced birefringence in optical fibers, 382

used for polarizer, 404
used for retarder, 382

Bends in an optical guide for integrated optics, 131
Benzene (C6H6), Kerr constant of, 316, 317, 1017
BER (bit error rate), 1123, 1124, 1134, 1148
Bessel beams, 237, 242, 245, 259

one dimensional model of, 239
Bessel function

modified, 714
of approximate form, 723
of the first kind of nth order, 17, 27, 243, 713
of the second kind of nth order, 713
recurrence formula of, 723
relationship of, 719

BGO (Bi12GeO20) (bismuth germanium oxide),
photorefractive effect of, 332

Bias voltage, 899
Biaxial crystal, 267, 300
Bidirectional pumping of EDFA, 864
Bi12GeO20 (bismuth germanium oxide) (BGO),

332
Bi12SiO20 (bismuth silicon oxide) (BSO), 332
Binary coding, 1095, 1096
Binocular parallax, 92
Binomial expansion, 11, 729
Biometric indicators for identification, 77
Birefringence, 95, 263, 821

bent-induced in fibers, 382, 404
circular, 413
Jones matrix of, 424
linear, 413
materials, 365, 412
of nematic liquid crystals, 822
of polarization-maintaining fibers, 707, 821
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Birefringence fiber polarizer, 404
Birefringence polarizer or polarizing prism, 396,

402
Bismuth germanium oxide (BGO) (Bi12GeO20),

photorefractive effect of, 332
Bismuth silicon oxide (BSO) (Bi12SiO20),

photorefractive effect of, 332, 511
Bit error rate (BER), 1123, 1124, 1134, 1148

versus signal to noise ratio, 1123
Bit rate, 1073, 1081, 1097, 1102, 1139
Blackbody radiation, 843
BNN (Ba2NaNb5O15), 1018
B2O3 (boric oxide) to lower the melting point of

glass, 706
Bolometer, 800
Bohr’s approximation, 529
Boltzman constant, 816, 876, 926, 1114
Boltzman distribution function, 816, 1157
Boltzman population ratio, 849
Borderline between the quantum-limited and

thermal-noise-limited S/N, 1123
Boric oxide (B2O3) to lower the melting point of

glass, 706
Boron chloride (BCl3), 777
Boundary, 110

of anisotropic media, 292
of isotropic media, 110
of nonlinear media, 1030

Boundary conditions, 110
Maxwell’s, 112
periodic, 1161, 1163
standing-wave, 1161, 1163
wavelength matching, 113

Bow-tie fiber, 707
Bragg condition, 959
Bragg frequency, 961, 963
Bragg grating method of dispersion compensation,

755
Bragg grating sensor of photoimprinted fibers, 742,

745, 747
Bragg reflection, 89
Bragg reflector, 962, 970, 971, 973
Breakdown voltage of air, 803
Brewster angle, 127, 407, 566
Brewster window, 129, 408
Brillouin scattering, 512, 602, 816, 817
BSO (Bi12SiO20) (bithmus silicon oxide),

photorefractive effect of, 332, 511
Buffer-covered fiber, 784
Buffered metal guide, 672
Bulge guide, 672
Bulge of field, 1044
Bulk waves, 144, 681
Buried crescent (BC) laser, 934, 936, 942
Burrus-type LED, 1008

Cabling of optical fibers, 783
CaCO3 (calcite), 277, 290, 402

Cadmium (Cd), 936
Cadmium selenide (CdSe), of photocell, 800
Cadmium sulfide (CdS), electrooptic properties of,

306, 800
Cadmium telluride (CdTe), electrooptic properties

of, 306
Calcite crystal (Iceland spar) (CaCO3), 277, 290,

402
physical constants of, 290

Calcium oxide (CaO) to lower the melting point of
glass, 706

Calorimetric methods of detecting light, 800
Canada balsam cement, 402, 404
CaO (calcium oxide) to lower melting point of

glass, 706
Capacity for information transmission through

optical fibers, 703
Capping layer, 803
Carbon dioxide (CO2) laser, 512, 894
Carbon disulfide (CS2)

Kerr constant of, 317
Kerr effect of, 1017

Carbon dioxide (CO2)
laser, 894
stimulated Brillouin scattering effect of, 512

Carbon tetrachloride (CCl4), Kerr constant of, 316,
317

Card for encryption, 80, 108, 560
Carrier, 841

concentration of, 930
confinement of, 930
negative and positive, 898
number of, 841
population inversion of, 847
rate of transition of, 841

Carrier electrons, 1151
Carrier frequency, 1085
Cassegrain telescope, 107, 108
Cavity resonance frequencies of laser diodes, 960
Cavity, see Fabry-Pérot cavity
c axis of crystals, 267
C60 (fullerene) doped liquid crystal, 357
CCl4 (carbon tetrachloride), 317
Cd (cadmium), 936
CDH (constricted double heterojunction) laser, 937
CDM (code division multiplexing), 1085, 1094
CdS (cadmium sulfide), 306, 800
CdSe (cadmium selenide), 800
CdTe (cadmium telluride), 306
CH4 (gaseous methane), 512
C6H6 (benzene), 316, 317, 1017
C10H16 (turpentine), optically active, 412
(CH3)2CO (acetone), 239
C6H4 (CH3)NO2 (nitrotoluene), 1017
C6H5NO2 (nitrobenzene), 316, 317, 1017, 1035
C12H22O11 (natural sugar), 414
C2H5OOH (alcohol), 512
Chain of optical amplifiers, 882
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Channeled substrate planar (CSP) laser, 936, 943
Characteristic equations, 605

for EH modes of optical fibers, 723
for HE modes of optical fibers, 723
for even TE modes, 622
for even TM modes, 610, 628, 632, 634
for odd TE modes, 622
for odd TM modes, 610, 612, 628, 633, 636
for TE modes of optical fibers, 719
for TM modes of optical fibers, 719
of coupled slab guides, 643
of optical fibers, 717, 718
of rectangular guides, 657

Characteristic temperatures
of the external quantum efficiency, 951
of the threshold current, 951

Characteristic wave impedance, 124
Chemical lasers, 893, 895
Chemical vapor deposition (CVD), 777
�
1�, 1018
�
2�, 523, 525, 1018
�
3�, 523, 527, 1018
Chiral, 355

smectic C liquid crystal, 354, 356
Chirp noise, 955
Chirped aperiodic Bragg grating, 748

photoimprinted in fiber cores, 755
Cholesteric type liquid crystal, 341, 342

as an optically active substance, 412
Chromium doped gallium arsenide (GaAs:Cr),

photorefractive effect of, 512
Chromium oxide (CrO3), 894
Cinnabar (HgS)

as an optically active substance, 412
electrooptic properties of, 305

Circle diagrams for polarization, 365
Circle function, 25

Fourier transform of, 25
Circular apertures in random spacing, 37
Circular birefringence, 413
Circularly polarized wave, 364
Circularly polarizing sheets, 409

for antiglare, 409
Cladding of fibers, 382, 694
Cladding layer of optical slab guides, 606
Clamped by the Boltzmann distribution, 855
Cleaved surfaces, 1013
CO2 (carbon dioxide) laser, 512, 894
Code division multiplexing (CDM), 1085, 1094
Code format

Manchester, 1097
nonreturn to zero (NRZ), 774, 1096, 1140
return to zero (RZ), 774, 1096, 1141

Coefficient matrix method, 606, 622, 623
Coherent communication systems, 807

jitter in, 819
Coherent detection, 807, 812, 970, 1094

immune to both polarization and phase jitter, 826

Collision of solitons, 1070
Color holograms, 87, 92
Comets’ tails, 249
Comb function, 30

Fourier transform of, 31
Commensurate, 528
Compensator, 380, 494

Babinet compensator, 380
Soleil compensator, 382

Complementary error function, 1126
approximate expression of, 1127

Complementary mode patterns, 735
Complex fields, 452
Complex (phase) conjugate waves, 507
Complex refractive index of silver, 672
Component field ratio in the complex plane, 452
Component waves, 431, 615
Computer-controlled method of jitter control, 820
Computer generated holograms, 97, 98
Concave end mirrors of gas lasers, 893
Conduction band, 898, 988, 998, 1151
Confined light in the lateral (horizontal) direction,

in laser diodes, 937
Confined light in the vertical (transverse) direction,

937
Confinement factor, 861, 866, 994
Confinement of injection current, 933
Conflection, 666
Conflection lens, 667
Confocal cavity, 236
Confocal reflector UV light cavity, 775, 783
Conjugate waves, 504, 507, 512, 521
Conical lens (axicon), 245, 246
Connectors

fiber, 790
loss, 790, 1130, 1131, 1138, 1144, 1146

Conservation of energy in elliptical polarization,
437

Constant azimuth � and ellipticity � lines of
Argand diagrams, 455

Constricted double heterojunction (CDH) laser, 937
Contact layer in electrode lamination, 680
Contact potential of a junction, 932, 1155
Continuous wavelength tuning by combining Ip

and Ib, 975
Conventions for expressing time dependence, 3
Conversion of joules into electron volts, 997
Conversion retarder of TM–TE converters, 499
Conversion of state of polarization

from circular to linear, 484
from elliptic to linear, 389
from linear to circular, 386
from unknown to linear, 389

Convolution, 14, 68, 69
Copper chloride (CuCl), electrooptic properties of,

306
Core-cladding interface of optical fibers, 694
Core glass of optical fibers, 694
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Core layer of slab guides, 606
Correction factor of Gaussian beams, 210
Correlation operation

autocorrelation, 67, 69
countermeasures for differences in scale, 74
cross-correlation, 68, 69

Corrugated reflectors, 957, 959, 964
Costas PLL (phase locked loop), 809
Cotton–Mouton effect, 327
Cotton type prism, 404
Coulomb field, 1152
Coulombic force, 341
Coupled guides, 643, 665
Coupled wave equations, 526
Coupler (tunable), 740
Coupling between rectangular guides, 664
Coupling circuits to preamplifiers, 1106, 1110
Coupling length, 664, 666, 740
Coupling loss, 1130, 1138, 1144, 1146
Coupling mechanism of slab guide couplers, 651
Critical angle

anisotropic media, 285, 296, 575, 576
isotropic media, 131, 142, 694

CrO3 (chromium oxide), 894
Crooks, Sir William, 259
Cross-correlation, 68, 69, 72
Cross-sectional ellipse, 307, 313, 399, 580
Crosstalk between channels, 859
Cryptograph, 78
Crystal(s)

with inversion symmetry, 523, 599
without second order nonlinearity, 523, 525
under various external fields, 302

Crystal axis
c axis, 267
crystallographic axis, 307
z axis, 307

Crystal cut, 307
Crystallography, 13, 307
CS2 (carbon disulphide), 239, 316, 1017
CSP (channeled substrate planer) laser diode, 934,

936, 943
CuCl (copper chloride), 306
Cutoff

condition in fibers, 719
EH modes, 723, 724
HE modes, 723, 724
TE mode, 719
TM mode, 720

condition in planar optical guides, 612
of TM modes, 612, 613
of buried optical guides, 661

CVD (chemical vapor deposition), 777
Cylindrical-coordinates Fourier transform, 16

D-cut, 757
D line of sodium spectrum, 414
D modes in nonlinear guides, 1048

d-rotary (right-handed) quartz, 412, 415
Dark current of photodiodes, 1103
Dark light soliton, 1077
DBR (distributed Bragg reflection) laser, 957, 963
DC-PBH (double-channel planar buried

heterostructure) laser, 932, 934, 936, 942, 1134
De Broglie, Louis, 985
DEks plane, 278
Decomposition of elliptically polarized light, 375
Decrypting, 80, 108, 560
Degenerate modes, 768
Delay-and-detect circuit, 825, 826, 827
υ
x� (delta function), 28

convolution of, 29
Fourier transform of, 29
train of, 30

Demountable fiber connectors, 786
Denisyuk hologram, 92. See also Lippman

hologram
Density m(�) of modes per unit frequency per unit

volume of blackbody radiators, 843, 847, 1160
Density of states, 898, 987, 988
Depletion region, 1155
Depolarized (unpolarized) wave, 364
Depth of focus of Gaussian beams, 213, 218
Designing fiber-optic communication systems, 1129
Detection of light by stimulated Brillouin

scattering effects, 815, 830
Devices for integrated optics, 655
Dextrorotary (d-rotary) optical activity, 412, 415
D-fiber, 708, 744, 757, 866
DFB (distributed feedback) grating, nonlinear, 1019
DFB (distributed feedback) laser, 896, 958, 961,

963, 970, 977
Di Francia, Toralds, 666
Dichoric mirror, 167, 197, 865
Dichoric polarizer, 394
Dielectric constant, 112

absolute, 112
nonlinear, 1022
relative, 112, 266
relationship with refractive index, 112, 266

Differential phase shift keying (DPSK), 824, 825,
828

Diffraction-free beams, 237
Diffraction from array, 32

of finite dimension, 37
of infinite dimension, 32, 36

Diffraction limited, 45
Diffraction patterns, 9, 1162

far field, 11
near field, 13

Diffraction unlimited images, 150
Diffusion constant, 1158
Diffusion equation, 1157
Diffusion length

of electrons, 932
of holes, 932
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Diffusion potential, 932
Digital modulation, 1083
Digital system 1 (DS-1), 1101
Digital system design, 1144
Digital video disk (DVD), 161
Diode laser, see Laser diodes
Diode pumped solid-state laser, 967
Dipole antenna, 102, 103, 556, 557
Dipole–dipole interations, 341
Dipole moment, 265

permanent, 265, 266
Dirac delta function (υ
x�), see υ
x� (delta function)
Direct detection, 796, 805, 806, 830, 1086
Direction of the wavenormal, 761, 762
Directional couplers, 605, 1018
Discotic liquid crystals, 341, 344
Dislocation spots caused by � rays, 697
Dispersion, 699, 1086

anomalous, 1056, 1066
material, 699, 701, 752, 1086
mode, 699, 696, 703, 769
normal, 1056
waveguide, 699, 701, 752, 1086

Dispersion compensator, 741, 755, 759
Dispersion countermeasures, 1051
Dispersion equation, 637, 638
Dispersion parameter, 749, 769, 1055, 1072

definition of, 749
of graded-index fibers, 768, 769

Dispersion-shifted fibers, 703, 705, 748, 749, 755,
769, 1051

Distortion of light pulses during transmission, 635,
709, 838

Distributed amplifier approach, 1111
Distributed Bragg reflection (DBR) laser, 957, 963
Distributed element preamplifier, 1106
Distributed feedback (DFB) grating, 1019
Distributed feedback (DFB) laser, 896, 958, 961,

963, 970, 977
Distributed FET amplifiers, 1111
Divergence of Gaussian beams, 212, 218
DMOAP (N,N-dimethyl-N-octadecyl-3-

aminopropyltrimethoxysilyl chloride),
353

DNA, 77, 160, 253
Doppler cooling, 255
Doppler shift, 254
Dominant mode, 612, 724
Donor atoms, 1152
Dopant-diffused channel, 936
Double balanced mixer, 814
Double heterojunction, 930
Double sideband (DSB) modulation, 1086, 1087
Double sideband suppressed carrier (DSBC)

modulation, 1087
Double-channel planar buried heterostructure

(DC-PBH) laser, 934, 936, 942, 1134
Double-clad fiber, 866

Double-crucible method, 775
DPSK (differential phase shift keying), 824, 825,

828
Drawing into optical fibers, 782
Drift of the operating point, 1092
Drift force, 334
DS-1 (digital system 1), 1101
DS-4 (digital system 4) PCM, 1145
DSB (double sideband) modulation, 1086, 1087
DSBC (double sideband suppressed carrier)

modulation, 1087
D-shaped inner cladding, 866
Dual-mode fiber, 739, 758

dispersion compensator, 741, 757
tunable coupler, 740

DVD (digital video disk), 161
Dye-doped liquid crystals, 357
Dye lasers, 893, 894
Dynodes, 796, 797

Expq, 656, 657

Eypq, 656
EASLM (electrically addressed spatial light

modulator), 350
ECB (electrically controlled birefringence), 345,

357
E mode

in linear optical fibers, 722
in nonlinear optical guides, 1043, 1048

EDFA, see Erbium-doped fiber amplitude
Edge-emitting LED, see LED
Edge enhancement of images, 63
Edible laser, 896
Effective core area, 1072
Effective densities of states, 926
Effective index method for rectangular optical

guides, 661
Effective index of refraction N, 619, 659

of e-waves, 279, 280, 282, 290, 294
Effective masses, 925, 926

of electrons, 898
of holes, 899

EH modes, 722, 731, 732
EH��, 732
Eigenvalue equation of M, 428, 433

eigenvalue of, 429, 433
eigenvector of, 429, 430
orthogonal eigenvectors of, 429, 430

Eikonal, 760
Eikonal equation, 759, 760
Einstein’s A coefficient, 842, 900
Einstein’s B coefficient, 843, 899
Elastooptic effect, 304, 317, 324

due to principal strain, 318
due to shearing strain, 318
table of elastooptic constants, 320

Electric flux density, 112
Electric noise power of EDFA, 868
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Electrical S/N of output from PIN photodiodes, 876
Electrically addressed spatial light modulator

(EASLM), 350
Electrically controlled birefringence (ECB) cell,

345, 357
Electrode configurations of integrated optics, 680,

681
Electron-beam lithography, 98
Electron density, 898
Electron mass, 924
Electron microscope, 161
Electrooptic effect, 304, 1017

Kerr, 316
material, 605
table of, 305

Electrooptic material, 605
Electrooptic modulator, 1086

of amplitude, 1086
of phase, 1096

Electrooptic probe, 313
Element fibers of fiber cables, 784
Element patterns of diffraction, 40, 88
Eliminating wave front distortion by phase

conjugate waves, 508
Ellipse or hyperbola, 434
Ellipsoid, 286
Elliptical core fiber, 707
Elliptically polarized wave, 364, 819

azimuth of major axes, 431
converted from linearly polarized wave, 367
converted into linearly polarized wave, 389

Ellipticity, 431, 436
Embedded guide, 671
Emission

spontaneous, 842
stimulated, 842

Encryption scheme, 80, 108, 560
encrypted card, 80, 108, 560

Energy gap, 804, 901, 925, 945, 996, 998
Energy states, 985

in bulk semiconductors, 985
in quantum wells, 988

Energy transfer in photorefractive crystals, 335
Enhanced photorefractive effect by external electric

fields, 334
Envelope function of solitons, 1059

dynamics of, 1064
Equivalent circuit of PIN photodiodes, 1102
ErC3 (erbium), 844, 845, 848, 853, 854, 858, 891
Erbium chloride (ErCl3), 837
Erbium-doped fiber amplifier (EDFA)

ASE (amplified spontaneous emission), noise of,
847

basics of, 834
chain of, 882
compared to SLA, 838
cross-talk of, 859
electric noise power of, 868

ESA (excited state absorption) of, 855
gain of, 838, 852, 901
noise figure of, 880
pump light of, 853, 864
rate equations of, 848
saturation of, 856
spectral line shape of, 196, 839

ErCl3 (erbium chloride), 837
ESA (excited state absorption), 855, 889
Etalon, 167, 179
Evanescent field, 58, 134, 139, 142

due to total internal reflection, 135
effective depth of penetration, 135
generating, 147
graphical solution of, 145
microscope by, 150
probes to detect, 154

Evanescent wave, see Evanescent field
Even TM modes in planar optical guides, 608, 609,

610, 611
e-wave (extraordinary wave), 269, 272, 273, 365
Excess noise in an APD, 1117
Excess noise index, 1117
Excimer laser, 894, 893
Excited dimer, 894
Excited state absorption (ESA), 855, 889
Exposure meter, 800
External quantum efficiency, 951
External terminal potential of laser diodes, 928
Extinction ratio, 916
Extraordinary wave (e-wave), 269, 272, 273, 365
“eyes” of Panda fiber, 407

F (fluorine), 895
Fabrication of optical fibers, 775

by one-stage process, 775
by two-stage process, 777

Fabrication of preform rods, 775, 777
Fabry–Pérot cavity, 166, 568

antiresonance of, 174
arbitrary angle of incidence of light, 170
determining the spacing of reflectors, 202, 203
finesse of, 194, 195, 196, 197
free spectral range, 171
modes, 232, 233
resolving power, 192
resonance, 174
stability diagram, 231
superstructure grating, 978
tunable fiber, 195

Fabry–Pérot dichroic filter, 197
Fabry–Pérot (FP) type laser, 904
Fabry–Pérot type fiber laser, 1005
Far field region, 11

divergence of Gaussian beams, 212
divergence of a Gaussian beam after a lens, 218
Fraunhofer region, 11

Faraday effect, 326, 327, 329, 415
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Faraday rotator mirror (FRM), 1005, 1007
Fast axis of anistropic media, 367
FDM (frequency division multiplexing), 1085,

1094, 1099
FeCl3 (ferric chloride), 777
Fe:LiNbO3 (Fe doped lithium niobate), 91
Fermat’s principle, 666
Fermi–Dirac distribution function, 898, 899, 992,

1151, 1157
Fermi–Dirac energy level, 898, 1151, 1152
Fermi level gap, 925
Ferric chloride (FeCl3), 777
Ferroelectric liquid crystals, 354
FETs (field effect transistors), 1111
FIB (focused ion beam), 158
Fibers. See also Optical fibers

side pit, 707
side tunnel, 707
with internal Bragg gratings, 744, 755

Fiber amplifier, types of, 836
Fiber Bragg gratings, 741, 1010
Fiber connectors, 790
Fiber coupler, adaptive, 517
Fiber Fabry–Pérot filter, 195
Fiber lasers, erbium-doped, 1004
Fiber-loop polarization controller (FPC), 824
Fiber-loop retarders, 382

design of, 383
how to use, 385
�/2 and �/4 of, 385, 386

Fiber optic communication, 1081–1150
amplifiers for, 1085
coherent detection system, 807
design of, 1129
homodyne detection, 1143
modulated light for, 1082, 1085
multiplexing, 1097
overview of, 1082
receivers, 1085
soliton, 1073
space optic, 105

Fiber-optic gyros, 1012
Fiber Raman lasers, 1009
Fiber sensing, 747
50-� circuit with mismatch in coupling to a

photodetector, 1106
Field effect transistor (FET), 1111
Film layer as core layer, 606
Finesse, 194, 195, 197

effective, 194
flatness, 194
reflection, 194

Fingerprint detection, 77, 103, 105, 521
First-order Bessel functions of the second kind, 714
FLAG (fiber-optic link around the globe), 693
Flame brushing method to enhance

photosensitivity, 743
Flatness finesse, 194

Fleming, Sir John A., 396
Fluorescent glow, 834, 835
Fluorinated alkyl methacrylate copolymer for

plastic fibers, 706
Fluorine (F), 895
Fluorozirconate glass (ZBLAN) fiber for

upconversion fiber amplifiers, 889
FM noise, 955
FM (frequency modulation) signal, 1088, 1092,

1094
Focal beam parameter (Rayleigh range of a

Gaussian beam), 209
Focal cavity, 235, 236
Focal length, 43
Focal plane, 47
Focused ion beam (FIB), 158
Fold-unfold-fold (FUF) law, 667
Forward four-wave mixing, 533, 534, 537
Forward pumping of EDFA, 864
Forward pumping versus backward pumping, 864
Fourier–Bessel transform, 18, 27
Fourier–Hankel transform, 18, 561
Fourier optics, 1
Fourier transformable property of convex lenses, 46
Fourier transform in cylindrical coordinates, 16,

18, 243
Fourier–Bessel transform, 18, 27
Fourier–Hankel transform, 18, 561

Fourier transform in rectangular coordinates, 16, 20
of υ
x�, 28
of derivatives, 64
of Fourier transforms, 69
of logarithms, 76
of the point spread function, 14
of shah functions, 32
of sinusoidal functions, 71, 103, 556

Fourier transform spectroscopy, 166
Four-level model of fiber amplifiers, 836
Fourth order nonlinearity, 541, 599
Four-wave mixing (FWM), 506, 1051

forward, 533, 534, 537
in a general direction, 526

FP (Fabry–Pérot) type laser, 904
FPC (fiber-loop polarization controller), 824
Fraunhofer diffraction pattern, 11
Fraunhofer region, 11
Free electrons, 1151
Free space optical communication link, 258, 1085

immune to turbulence, 516
Free spectral range (FSR), 179, 182

in terms of frequency, 181, 235
in terms of wavelength, 179, 181

Frequency chirp, 254
Frequency discriminator, 1094
Frequency division multiplexing (FDM), 1085,

1094, 1099
Frequency modulation (FM), 1088, 1092, 1094
Frequency response of PIN diodes, 1104
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Frequency shift keying (FSK), 1089, 1095
Fresnel field, 13
Fresnel–Kirchhoff diffraction formula, 11, 58, 243,

545
Fresnel–Kirchhoff integral, 56, 544
Fresnel reflection equation, 121
Fresnel region, 13
Fresnel rhomb, 137
Fresnel’s explanation of optical activity, 413
Front focal plane, 47, 71
FRM (Faraday rotator mirror), 1005, 1007
FSK (frequency shift keying), 1089, 1095
FSR, see Free spectral range
FUF (fold-unfold-fold) law, 667
Full width at half maximum (FWHM), 197, 1071
Fullerene (C60) doped liquid crystals, 357
Full waveplate, 385
Fundamental soliton, 1069, 1071
Fused silica (SiO2)

elastooptic properties of, 320
Kerr effect of, 1017

Fusen, 485
FWHM (full width at half maximum), 197, 1071
FWM, see Four-wave mixing

GaAs, see Gallium arsenide
GaAs:Cr (chromium doped gallium arsenide), 512
GaAs MESFET, 1111
GaxIn1�xAsyP1�y laser, 945
Gabor-type hologram, 81
Gain compression, 838
Gain constant

with respect to distance, 910
with respect to time, 910

Gain guiding, 937, 939, 942
Gain of optical amplifiers, 838, 850, 852, 895
Gain spectrum

of laser diodes, 902, 904, 923, 928
of MQW lasers, 992, 995, 1004

Gallium arsenide (GaAs)
elastooptic properties of, 320
electrooptic properties of, 306
photorefractive properties of, 332

Galvanometric scanner, 101
Gamma-ray (�-ray) irradiation to increase fiber

loss, 697, 698
Gaseous methane CH4, stimulated Brillouin

scattering, 512
Gas lasers, 893
Gas pipes for keeping moisture off, 786
Gaussian beam, 205

amplitude distribution, 211
beam waist, 208, 216, 217
cross-sectional area of, 209
depth of focus, 213
in spherical mirror cavities, 227
intensity distribution, 211
location of waist, 208, 217

q parameter of, 207, 209, 213, 214, 215, 216
Rayleigh range of, 209, 218
transformation, 214, 259
with higher order modes, 223, 233, 235
with the fundamental mode, 206

Gaussian distribution, 1124
Gaussian lens formula, 43, 44, 219
General guides, 625
Generalized wave equation, 269
GeO2 (germanium dioxide), 697, 705, 706,
GeO2 (germanium dioxide)-doped core, 694, 697
Geological surveys, 97
Geometrical optics theory, 605, 759
Germanium dioxide (GeO2), 694, 697, 705, 706
GH (guest-host) liquid crystal cell, 353
Glan–Air polarizing prism, 402, 404
Glan–Faucault prism, 402, 404
Glan–Thompsom polarizing prism, 404
Glass, photoreflective media, 512
Goos–Hänchen shift, 141, 142
Graded-index fiber, 705, 759, 762, 768, 769, 770
Graded index (GRIN) lens, 330
Gradient, 288
Graphical solution

of evanescent waves, 145
of polarization states, 365
of propagation in an uniaxial crystals, 269, 270

Grating
arrayed waveguide, 673, 676, 1099
photoinduced Bragg, 741, 747, 755
reflection from Bragg, 957
scattering from Bragg, 963
transcendental equations, 611

Grating spectroscopy, 166
Gravitational acceleration, 572
Gravitational wave, 257
GRIN (graded index) lenses, 330
Group delay in optical fibers, 699, 749, 759, 1055
Group index, 750, 768
Group velocity, 748, 1055
Group velocity dispersion (GVD), 1053, 1055,

1057, 1058, 1069
Guard ring, 803
Guest-host (GH) liquid crystal cell, 353
Guide, slab optical, see Optical slab guides
Guided nonlinear boundary wave, 1030
Guided waves, 681, 1031
GVD (group velocity dispersion), 1053, 1055,

1057, 1058, 1069

H mode, 722
Half-mirror (HM), 65, 505, 1005
Half-wave fiber loop, 383
Half-waveplate (�/2 plate), 383, 385

how to use, 385
polyimide, 677

Handedness of circular polarization, 364, 374,
439
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HBT (heterojunction bipolar transistor), 1111
HE modes, 722, 731, 735, 736

cutoffs, 723
HE11 mode, 732
HE��, 731, 735, 736
Heavyside’s step function, 25, 992
HeCd (helium-cadmium) laser for blue

light, 101
Helium-neon (HeNe) laser for red light,

101, 893
HEMT (high electron mobility transistor), 1111
HeNe (helium-neon) laser for red light, 101, 893
Hermite Gaussian beam (higher order modes), 223,

226
Hermite polynomial of order n, 224
Heterodyne detection, 807, 830
Heterojunction, 930
Heterojunction biopolar transistor (HBT), 1111
HF (holey fiber), 706
HF (hydrofluoric acid), 158
HgS (cinnabar), optically active, 305, 412
High density data storage, 87, 161, 162, 163
High electron mobility transistor (HEMT), 1111
High impedance (HZ) with compensating circuit,

1107, 1110
High pass spatial filter, 63
High-powered fiber amplifier, 866
Higher order Gaussian beam, 226
Hilbert transform, 1090
H2O (water), see Water
HM (half-mirror), 505, 1005
Holes in semiconductors, 1153
Hole burning, 939, 941

spatial, 968, 969, 1004, 1007
spectral, 945

Hole density, 898
Holey optical fiber (HF), 706
Hologram, 81

Gabor-type, 81
off-axis type, 85

Holographic writing of photoinduced Bragg
grating, 743

Holography, 81
acoustic, 95, 97
applications of, 92
color, 87, 92
computer-generated, 97
interference, 93
microwave, 96
nonoptical, 95
to explain phase conjugate, 504, 530
thin emulsion, 88
synthetic aperture, 97
vibration measurement, 45
video display, 99
volume, 87
white light, 87

Homeotropic orientation, 344, 345

Homodyne detection, 339, 340, 809, 812, 817, 830,
1096, 1143

by stimulated Brillouin scattering, 817
Homogeneous broadening, 841
Homogeneous orientation, 344, 345
Homojunction, 930
Horizontal and vertical external fields, 684
Horizontal external field

in rib guides, 684
in embedded guides, 683
periodic, 684

Horseshoe crab’s eyes, 447, 585
How to use waveplates, 385

full-wave plate, 385
half-wave plate, 385
quarter-wave plate, 386

Huygens’ principle, 15, 16
Huygens’ wavelet, 299
Huygens’ wavelet ellipsoid, 577
Hybrid modes, 709, 723

designation of, 729, 730
Hydrogen to create transmission loss, 695, 697
Hydroxyl (OH) formation, 695, 697
Hyperbola or ellipse, 433
Hysteresis curve, 1021
HZ (high impedance) circuit, 1107, 1110

Iceland spar (calcite crystal) (CaCO3), 277, 290,
402

IF (intermediate frequency) amplifier, 808, 1094
IM (intensity modulation), 313, 1086, 1087
Image intensifier, 352
Image processing, see Picture processing
Immersed guide, 672
Immobile charges, 332, 1154
Impedance

characteristic wave, 124
electric, 112
intrinsic, 111, 112, 869
of p-n junction, 1159

Impedance approach, referring to the normal
direction, 124

Impulse response function of free space, 14
Impulse train function, 30
Incoherent–coherent converter, 352
Incremental impedance of a p-n junction, 1159
Index of refraction, 112, 266

relationship to the dielectric constant, 112, 266
Index-matching fluids, 954
In1�xGaAsyP1�y (gallium arsenide doped with

indium and phosphorus) laser, 895
Indicatrix, 264, 285, 292

absorption indicatrix, 400
distortion of, 302

Indium tin oxide (ITO), 188
Infrared absorption associated with the vibration of

Si — O network, 708
Inhomogeneous broadening, 841
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Injection current, density of, 910, 911
InP:Fe (iron-doped indium phosphide), 512
In-phase component, 810, 1090
InP:Ti (titanium-doped indium phosphide), 512
Insertion loss, 132
Integrated optics, 605

arrayed-waveguide grating (AWG) for, 673
couplers, 678
electrodes, 681
modulators, 312, 1086
optical guides, 670
optical interconnects, 982
optical magic T, 678

Intensity modulation (IM), 313, 1086, 1087
Intensity pattern of diffraction, 22, 27
Interdigital electrode, 324
Interference filter, 167
Interference holography, 93
Interferometers, 167, 605
Intermediate frequency (IF), 1094
Internal writing of Bragg gratings, 743
Internal reflection, total, 130, 145, 147, 296
Interrogation of handwritten letters, 521
Intradyne detection, 812, 830
Intrinsic impedance, 111, 112, 869
Intrinsic impedance !0 of a vacuum, 111
Intrinsic impedance !1 of a medium, 111
Intrinsic type semiconductors, 1151
Invariance of the location of the input

pattern, 50
Invariance of the state of polarization, 362
Inversion, population, 836, 847, 864
Inversion symmetry of crystals, 541, 599
Ionic dipole, 818
Iron doped indium phosphide (InP:Fe),

photorefractive effect of, 512
Isopachic fringe pattern, 95
Isolator, optical, 328, 330, 838, 954, 1005
ITO (indium tin oxide) electrodes, transparent

electrode of, 188
I-type layer, 803
I-V characteristics of p-n junctions, 1156

Jacobian elliptic function with modulus
m, 1027

Jitter in coherent communication systems, 819
Joining fibers, 786
Joint transform correlator (JTC), 64, 70
Jones matrix of, 421, 444

eigenvectors, 428
half-wave plates, 424
polarizers, 422
quarter-wave plates, 424
retarders, 424, 425
rotators, 425

Jones vector, 421
JTC (joint transform correlator), 64, 70

compared to VLC, 72

" � ˇ diagram, 617, 618
" � � diagram, 618
k coordinate expression of Snell’s law, 145, 164
KBr (potassium bromide), 708
KCl (potassium chloride), 708
KDP (potassium dihydrogen phosphate),

electrooptic properties of, 305, 316, 321, 1018
KD2PO4(K-KDP), 305
k-matching, 113
Kepler, Johannes, 131, 249
Kerr, John, 304, 316

cells, 317
coefficients, 316
constants, 317
electrooptic effect, 304, 316, 1019, 1051
media, 512, 518, 527, 1017

Keying device, 1095
Kink in the emission characteristic curve of laser

diodes, 941
Kirchhoff, Gustav Robert, 12, 13, 56, 58, 545
Korteweg–de Vries (KdV) differential equation,

1049
Kr2 (krypton) for excimer lasers, 894

l-rotary (left-handed) quartz, 412, 415
�/4 shift DFB lasers, 961
Laminated aluminium polyethylene (LAP), 697
Laminated electrodes, 680
Laplacian operator, 711
Laser cavity, 175
Laser(s)

chemical, 895
definition of, 833
dye, 894
edible, 895
erbium-doped fiber, 1004
fiber Raman, 1009
gas, 893
ring, 904
semiconductor, 895
solid state, 894, 967

Laser cooling of atoms, 254
Doppler cooling, 254
polarization gradient cooling, 254

Laser diode(s) (LD)
amplitude modulation characteristics, 919
arrays of, 980
beam patterns, 946
conditions of laser oscillation, 905
confinement of carriers, 930
confinement of injection current, 933
confinement of light, 937
distributed Bragg reflector (DBR), 957
distributed feedback (DFB), 958
gain spectrum, 896, 902
laser noise, 952
light transmitter, 1082
modulation characteristics, 919
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Laser diode(s) (LD) (Continued)
multi-quantum well (MQW), 984
noise, 952
output power, 913, 926
quantum dot, 1002
quantum well, 984
quantum wire, 999
rate equations, 909
relaxation oscillation, 916, 917
selection of light sources, 1011
single frequency, 956
temperature dependence, 951
threshold current density, 912
tunable, 189, 970, 977
turn on delay, 914, 926
unwanted FM, 944, 1086, 1095
wavelength tuning, 970

Laser frequency stabilizer, 176
Laser oscillation

condition for, 905
explanation of, 908

Latitude lines of ˇ (or �) of Poincaré sphere, 478
Lausent type saccharimeter, 417
Law of superposition, 548–550, 1070
LD, see Laser diode
Leaky wave, 150
LED, see Light-emitting diode
Leith–Upatnieks type hologram, 82
Lengths of major and minor axes of elliptical

polarization, 316
Lens (convex lens), 40

collimating property, 42
diffraction limited, 45
finite aperture, 102, 103
focal length, 43
Fourier transformable property, 46
imaging property, 43
radiation pressure, 260

Levorotary (l-rotary) optical activity, 412
LiF (lithium fluoride), 708
Lifetime, 834

of electrons in the conduction band, 910
of photons inside a cavity, 910, 920

Light computer, 1021
Light confinement in laser diodes in the horizontal

(lateral) direction, 937
Light confinement in laser diodes in the vertical

(transverse) direction, 937
Light detectors used in optics laboratories, 796, 800
Light-emitting diode (LED), 952, 1007, 1011,

1013, 1082, 1092
characteristics, 1007
structure, 1008

Light path (optical path), expression of, 761, 762
Light to pump EDFA, 837
Light rays, direction of, 274, 275, 299
Light transmitters, 893, 1082
Light tweezers, 226, 249, 251, 253

LiIO3 (lithium iodate), 306
LiNbO3, see Lithium niobate
Linear core layer sandwiched by nonlinear

cladding layers, 1037
Linear normalized thickness, 1047
Linear polarization (LP) mode, 709, 726, 727, 736
Linear polarizer, 365, 394, 587
Linearly birefringent, 413
Linearly polarized LPm� mode, 726. See also

LPm� modes
Linearly polarized wave, 363
Lines of constant parameters on Argand diagram

azimuth �, 455
ellipticity �, 458

Li2O (lithium oxide) to lower the melting point of
glass, 706

Lippmann hologram, 92. See also Denisyuk
hologram

Liquid carbon disulphide CS2, stimulated Brillouin
scattering (SBS) of, 512

Liquid crystal(s), 341
cholesteric, 342
discotic, 344
nematic, 343
smectic, 343

Liquid crystal devices, 346
Fabry–Pérot resonator, 346
fiber filter, 176, 188
microlens, 347
rotatable waveplate, 346
spatial light modulator (SLM), 349, 350, 351,

352
television, 350

Lithium iodate (LiIO3), electrooptic properties of,
306

Lithium fluoride (LiF), 708
Lithium oxide (LiO2), 706
Lithium niobate LiNbO3

deposited on lithium tantalate, 296–299, 575
elastooptic effect of, 320
electrooptic effect of, 144, 305, 307, 312, 358,

579, 649, 821
photorefractive effect of, 332, 511

LiTaO3, see Lithium tantalate
Lithium tantalate (LiTaO3)

electrooptic properties of, 296, 298, 299, 305,
321

photorefractive effect of, 511
LO (local oscillator) light, 192, 807
Local oscillator (LO) light, 192, 807
Local oscillator intensity noise power (LOIN), 1122
Location of the Gaussian beam waist, 208, 217
Longitudinal external field to bulk waves, 681
Longitudinal lines of the Poincaré sphere, 479
Longitudinal mode number, 972
Longitudinal modes, 846, 909
Long-line effect, 954
Loose-tube covered fiber, 784
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Lorentz lineshape function, 840
Loss, fiber

bending, 407
cavity, 173
connector, 790, 1130, 1131, 1138, 1144, 1146
coupling, 1130, 1138, 1144
fiber transmission, 694, 1138, 1146
increase due to hydrogen and gamma-ray

irradiation, 695
splicing, 790, 1130, 1131, 1138, 1146

Low pass spatial filter, 62
Low-work-function material, 796
LP (linear polarization) mode, 709, 727, 736
LPm� modes, 726, 728, 730, 735, 737

designation of, 729
field pattern of, 735

Lumped element approach, 1106
Lyot–Ohman filter, 363, 385

m2 (beam propagation factor), 220
Mach–Zehnder fiber coupler, 745
Mach–Zehnder interferometer, 679, 683, 793, 1019
Mach–Zehnder light modulator, 685
Magnesium fluoride (MgF2), 681, 708
Magnesium oxide (MgO) to lower melting point of

glass, 706
Magnetic flux densities, 112
Magnetic flux leaking out of transformer, 145
Magnetic permeability, 111, 326
Magnetooptic effect, 326
Magnetooptic property of a Nd:YAG crystal, 968
Magnification of images, 219, 220
Major and minor axes of elliptically polarized

waves, 372, 431, 433
Major principal transmittance k1 of polarizer

sheets, 396
MAN (metropolitan area network), 866
Manchester Code, 1097
Manipulation of micron-sized spheres with light

beams, 249
Mass fusion splicing machine of fibers, 786, 787
Material dispersion of optical fiber, 699, 701, 752
Matrix

coefficient, 623
Jones, 421
transmission, 625, 626, 630

Maximum available power from source, 1114
Maximum energy coupling in four-wave mixing,

528
Maximum modulation frequency, 920
Maxwell’s equations, 268, 521, 607, 609, 610, 709,

715
boundary conditions of continuity, 112, 121

MCVD (modified chemical vapor deposition)
method, 778

Mellin transform, 76
Memory disks, high density, 161
Mercury flash lamp, 894

Meridional rays, 693, 718, 771
Mesa structure (steep hill structure) laser diodes,

995
MESFET (metal semiconductor field effect

transistor), 1110
Metal field plate to prevent stray light into detector

diodes, 803
Metal guide for integrated optics, 672
Metal semiconductor field effect transistor

(MESFET), 1110
Metastable lifetime of Er3C, 891
Methane (CH4), 512
Method by trial solution, 1024
Method of separation of variables, 1022, 1160
Metropolitan area network (MAN), 866
MgF2 (magnesium fluoride), 681, 708
MgO (magnesium oxide) to lower the melting

point of glass, 706
Michelson interferometry, 166
Microbending loss of optical fibers, 783, 784
Microbes, 363
Microchannel plate to enhance electron density,

800
Microfiche recording, 93
Microscope, Schlieren, 63
Microwave hologram, 96
Minimum detectable power of receivers, 1113
Minor principal transmittance k2 of polarizer

sheets, 396
Mirrors

dichroic, 167
half, 65, 505
phase conjugate, 504

MISER (monolithic isolated single-mode
end-pumped ring) laser, 968, 1012

MMI (multimode interference) splitter, 674
MNA (2-methyl-4-nitroaniline) crystal for phase

modulation, 182
Modal noise, laser diode, 955
Modal retarder of TM–TE converter, 499
Mode

density, 843, 847, 1160
dispersion of optical fiber, 612, 699, 703, 769
hopping of laser diodes, 945
in graded index fibers, 759, 767, 768, 772
in nonlinear guides, 1043, 1048
in step index fibers, 718
inside cavities, 223, 226, 235
of propagation, 605
number with the periodic boundary condition,

1163
number in slab guides, 612
patterns in graded-index fibers, 770
pattern in rectangular guides, 662
patterns in slab guides, 615

Mode converter, 497, 502, 684, 685
Mode hopping, 945
Mode-index lens, 620
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Mode locking, 945
Mode number, see Mode
Modified Bessel function, 714

of the first kind, 714
of the second kind, 714

Modified chemical vapor deposition (MCVD)
method, 778

Modified ray model method, 606, 622, 636
Modulation format

amplitude (AM), 1086, 1087, 1083
amplitude shift keying (ASK), 812, 1089, 1095
double sideband (DSB), 1086, 1087
double sideband suppressed carrier (DSBC),

1087
frequency (FM), 1088, 1092
frequency shift keying (FSK), 1089, 1095
intensity (IM), 313, 1086, 1087
phase (PM), 1088, 1092, 1094
phase shift keying (PSK), 1089, 1095
pulse amplitude (PAM), 1088, 1094
pulse code (PCM), 1084, 1089, 1094
pulse duration modulation (PDM), 1088, 1094
pulse position (PPM), 1088, 1094
quadrature amplitude (QAM), 1087, 1090
single sideband (SSB), 1087, 1090
sinusoidal, 103
vestigial sideband (VSB), 1087, 1091

Modulation index, 1086
Modulators, 312, 605, 1018
Mole fraction, 923
Molecular reorientation of nematic liquid crystals,

345
Momentum of photons, 250, 572
Momentum-matching, 113
Monochromator, 175
Monocoated fiber, 784
Monolithic isolated single-mode end-pumping ring

(MISER) laser, 968, 1012
Monomode fiber (single mode fiber), 700, 705, 728
Monomode optical guide, 612
Morse code, 1095
Movement of a point on the Poincaré sphere, 494

along constant latitude (ˇ), 497
along constant longitude (�), 494

Movement parallax, 92
MQW laser, see Multi-quantum-well laser
MQW (multi-quantum-well) nonlinear layers, 1019
Multiexposed hologram, 519
Multi-ingredient fiber, 706
Multimode graded-index fiber, 705, 769
Multimode interference (MMI) splitter, 674
Multimode step-index fiber, 703
Multiple D fiber, 866, 867
Multiplexer, 677
Multiplexing (MX), 1085, 1097

code-division (CDM), 1085, 1094
frequency division (FDM), 1085, 1094, 1099
time division (TDM), 1085, 1094, 1100

wavelength division (WDM), 191, 674, 676,
1085, 1098

Multiplexing fiber sensor, 747
Multiplier layers of APD, 803
Multi-quantum-well (MQW) laser, 984, 992,

994–999
energy states, 988
gain curve, 992
threshold current, 994

Multi-quantum-well (MQW) nonlinear layer, 1019
Multiunit fiber cable, 784
MX, see Multiplexing

N ð N matrix connection by AWG, 676
NA (numerical aperture), 151, 693, 694, 701, 703,

706, 770
N˛ (zero gain electron density of laser media),

902
NaCl (sodium chloride), 341, 708
NaClO3 (sodium chlorate), optically active, 412
Na2O (sodium oxide) to lower the melting point of

glass, 706
Narrow stripe electrodes of laser diodes, 934
N,N-dimethyl-N-octadecyl-3-amino-

propyltrimethoxysilyl chloride (DMOAP),
353

Natural sugar (C12H22O11), 414
Nd:YAG (neodymium-doped

yttrium-aluminum-garnet) laser
rod, 890, 1178
solid-state laser, 967, 1012

Near field (Fresnel field), 13
imaging, 110
of optical microscopes, 150
optics, 110

Nebulae, Faraday effect of, 363
Negative birefringence, 267
Negative feedback circuit, 1109
Nematic liquid crystal, 341, 343, 347, 357
NEP (noise equivalent power), 1117
Neodymium (Nd)-doped fiber amplifier, 836, 837
Neodymium YAG laser, see Nd:YAG laser
Neodymium YAG rod, 889
NH4F (ammonium fluoride), 158
Nicol prism, 402
Nitrobenzene (C6H5NO2)

Kerr constant of, 316, 317
Kerr effect of, 1017, 1035

Nitrotoluene (C6H4(CH3)NO2), Kerr effect of,
1017

NLC (nematic liquid crystal), 341, 343, 347, 357
Nondeformed strain, 304
Noise

associated with relaxation oscillation, 955
due to external optical feedback, 953
due to fluctuations in temperature and injection

current, 955
due to mode hopping, 955



INDEX I.15

due to spontaneous emission, 955
excess index, 1117
FM, 955
in an APD, 1117
in detector systems, 1113
partition, 955
quantum limited, 1116, 1131
shot, 1113
thermal, 1114
thermal noise limited, 1116, 1131

Noise equivalent power (NEP), 1117
Noise figure, 880, 883
Nonlinear

differential equations, 550, 1022, 1024
distributed feedback (DFB) gratings, 1019
Kerr media, 512, 518
normalized thicknesses, 1041, 1048
parameter, 1072, 1077
saturable absorbers, 945
Schrödinger equation, 1067
susceptibility of photorefractive crystals, 511

Nonlinear-index coefficient n2, 1023, 1066
Nonoptical holographies, 95
Nonpolarizing beam splitter (NPBS), 411, 822, 830
Nonradiative transitions, 835
Nonreciprocal effects, 713
Nonreturn to zero (NRZ) code, 774, 1096, 1140
Normal dispersion region, 1056
Normal to ellipse, expression of, 432
Normalized guide index b, 659
Normalized propagation parameter, 728
Normalized pumping rate of fiber amplifiers, 850
Normalized steady-state population difference, 849
Normalized thickness of optical guides, 611, 1041,

1047, 1048
“nose” of Panda fibers, 407
NPBS (nonpolarizing beam splitter), 411, 822, 830
NRZ (nonreturn to zero) code, 774, 1096, 1140
n-type semiconductors, 1151, 1152
Numerical aperture (NA), 151, 693, 694, 701, 703,

706, 770
�th order Bessel function of the first kind, 713

O modes in nonlinear guides, 1043, 1048
OASLM (optically addressed spatial light

modulator), 351
Odd TM modes of optical planar optical guides,

608, 609, 610
Off-axis type hologram, 85
Offset core fiber, 866
OH (hydroxyl) ion impurities, 695, 697
On-off modulation (ASK modulation), 812, 1095
One-stage processes of fabrication of optical fibers,

775
OPC (optical phase conjugate), 541
Operational amplifier, 1107
Optic axis of crystals, 267
Optical activity, 412, 415, 586

Optical amplifier
based on doped fiber, 833. See also Erbium

doped fiber amplifier (EDFA)
based on photorefractive effect, 334, 338

Optical communication, see Fiber optic
communication

Optical correlators, 64
Optical directional coupler, 988
Optical feedback, 903
Optical fiber(s)

cabling of, 783
characteristic equation of, 717, 718
cross sectional field distribution, 730
dispersion shifted, 703, 705, 749, 755, 1051
dominant mode of, 724
dual mode, 739, 757, 758
fabrication of, 775
gamma ray exposure, 697
graded index, 759, 762, 768, 769, 770
holey, 706
hydrogen exposure, 695
joining, 786
kinds of, 703
modes, 718, 726, 729, 736
multimode, 703
numerical aperture of, 693
other than silica based, 708
photoimprinted Bragg grating, 741, 1010
polarization preserving, 707
solution in the cladding region, 714
solution in the core region, 713
splicing, 786
transmission loss of, 694

Optical fiber communication, see Fiber optic
communication

Optical fiber connector, 790, 1130
Optical fibers other than silica-based fibers, 708
Optical guide, see Optical slab guide
Optical guide coupler, 144
Optical interconnect, 99, 982
Optical isolator, 327, 1005

polarization dependent, 328
polarization independent, 330

Optical magic T, 678
Optical modulator, 312, 679, 1018
Optical phase conjugate (OPC), 541
Optical resonator, see Fabry–Pérot cavity
Optical signal multiplexing, 1085
Optical signal processing, see Spatial filters
Optical slab guides, 605, 606

asymmetric, 606, 638
characteristic equation, 610, 633, 634, 643
coefficient matrix approach, 622, 623
component waves, 615
coupled slab guide, 643, 651
dispersion equation, 612, 637, 638
effective index of refraction, 619
even modes, 608, 628
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Optical slab guides (Continued)
field distribution, 615
mode cutoff, 612
mode number, 612
modified ray model, 636
normalized thickness, 611
odd modes, 608, 628
propagation constant, 612
symmetric, 606
transmission matrix method, 625, 630
TE modes, 607, 620
TM modes, 607
wave optics approach, 607

Optical tweezer, 226, 249, 251, 253
Optical waveguides

arrayed waveguide grating (AWG), 673
characteristic equation, 657
conflection, 666
conflection lens, 667
coupling between guides, 664
effective index method, 661
electrode configurations, 681
electrode structures, 680
magic T, optical, 678
mode converter, 685
mode patterns, 662
polyimide half-waveplate, 677
power divider, 673
practical example of designing, 659
rectangular, 655
types of waveguides for integrated

optics, 670
Y junction, 673

Optically addressed spatial light modulator
(OASLM), 351

Optically tunable optical filter, 341
Optimum length of fiber amplifiers, 867
Optimum number of EDFA repeater

stations, 882
Optimum value of the multiplication

factor of an APD, 1148
Optoelastic, see Elastooptic effects
Optoelectronic, see Electrooptic effects
Orbital electrons, 1151
Order of mode (mode number), see Mode
Ordinary wave (o-wave), 269, 272, 273, 365
Organohydrogen polysiloxane monomer as

hardener, 697
Orientation polarization, 265
Orthogonal eigenvectors, 429
Orthogonality between constant � and � lines of

the Poincaré sphere, 465
Orthoscopic image, 85
OVD (outside vapor deposition) method, 778,

780
Outlining input image, 64
Output power from laser diodes, 913, 926

Outside vapor deposition (OVD) method, 778,
780

Overdrive parameter of the injection current, 952
Overview of fiber-optic communication systems,

1082
o-wave (ordinary wave), 269, 272, 273, 365
Oxazine for dye lasers, 894

p wave (parallel wave), 118, 157
Pair production, 1155, 1159
PAM (pulse amplitude modulation), 1088, 1094
Panda fiber, 406, 707

“eyes” of, 407
“nose” of, 407
polarizer, 407

Parallax
accommodation, 93
binocular, 92
movement, 92

Parallel alignment of the reflectors of a
Fabry–Pérot interferometer, 199

Parallel switching, 1092
Parallel wave (p wave), 118, 157
Paraxial, 11
Partition noise of laser diodes, 955
Parts per billion (ppb) (10�9), 695
Pattern recognition, see Optical correlator; Phase

conjugate optics
PBS (polarizing beam splitter), 412, 822, 830
PCS (plastic-clad silica) fiber, 775
PCM (pulse code modulation), 1084, 1089, 1094
PCVD (plasma chemical vapor deposition) method,

778, 779
PDFA (praseodymium-doped fiber amplifier), 836
PDLC (polymer-dispersed liquid crystal) type

spatial light modulator (SLM), 352
PDM (pulse duration modulation), 1088, 1094
Period of relaxation oscillation, 930
Periodic boundary condition, 1161, 1163
Periodic horizontal external field, 684
Periodic vertical external field, 684
Permanent dipole moment, 265, 266
Permanent joint, 786
Permeability, magnetic, 111, 326
Perpendicular wave (s wave), 118, 157
Perturbation theory, 1164
Phase conjugate optics, 504

expressions of, 507
for distortion free amplification, 513
for eliminating wave front distortion, 508
for picture processing, 512, 519
for self-tracking, 514, 517
in real time, 511
mirror, 504, 508

Phase conjugate wave, 504, 521, 537, 539
explained by holography, 504
generation of, 506
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Phase conjugation method used in dispersion
compensators, 755

Phase correction factor of Fabry–Pérot resonators,
232

Phase discriminator, 1094
Phase diversity technique, 812
Phase grating, 334
Phase jitter, 819, 823
Phase-lock loop (PLL), 809
Phase matching, 113, 284
Phase modulation (PM), 1088, 1090, 1092, 1094
Phase modulators, 1018
Phase shifter, 310
Phase shift keying (PSK), 1089, 1095
Phase velocity, 3, 748
Phonons, 817, 835
Phosphorus oxychloride (POCl3), 777
Phosphorus pentaoxide (P2O5), 697
Photocell, 800
Photochromic flexible guide, 672
Photoconductive effect, 800
Photoconductor cell, 800
Photocurrent, 1159
Photodetector, 1159
Photodiode, 800
Photoelastic effect, see Elastooptic effect
Photoelastic fringes, 95
Photoelastic sheet, 95
Photoelasticity, 94
Photoelectric effect, see Electrooptic effect
Photoinduced Bragg grating, 741, 747, 755

applications of, 744
methods of writing, 742
photograph of, 745

Photolithography machine, 513
Photomultiplier tube (PMT), 796, 798
Photon

flux density, 843
lifetime, 920
momentum, 250, 572
punch press, 903
radiation pressure, 249

Photon–electron converter, of a cathode, 796
Photon-induced pair production, 1103, 1159
Photon tunneling microscope, 152, 161
Photorefractive beam combiner for coherent

homodyne detection, 339
Photorefractive effect, 331

adaptive fiber couplers, 517
cockroach theory, 333
crystals, 77, 511, 517
energy transfer, 335
enhanced by external electric fields, 334
fly-swatter theory, 332
joint transform correlator, 77
optical amplifiers, 334
optically tunable filters, 341
real time phase conjugate mirrors, 511

Photosensitivity, 741
Phototransistor, 800
Photovoltaic effect, 800
P–I curve (light power vs. injection current) of

laser diodes, 927
Picture processing, 512, 519

by phase conjugate mirrors, 519
by spatial filters, 61

Piezoelectric effect, 100
Piezo transducer (PZT), 176
Pigtailed laser diode, 1130
PIN and PN photodetectors, 796, 801, 1085, 1104,

1151
equivalent circuit of, 1102

Pinhole camera, 103, 558
Planar optical guides, see Optical slab guide
Planar-type W guide, 633
Planck’s constant, 250, 797
Planck’s factor of the radiation law, 1114
Plane mirror cavity, 234
Plane waves, 1, 268
Plano-convex lens, 41
Plasma chemical vapor deposition (PCVD)

method, 778, 779
Plasma effect, 939, 944, 963
Plasma-enhanced modified chemical vapor

deposition (PMCVD) method, 779
Plastic-clad silica (PCS) fiber, 775
Plastic fiber, 706
PLL (phase locked loop), 809
PM (phase modulation), 1088, 1092, 1094
PM (pulse modulation), 1094
PMCVD (plasma-enhanced modified chemical

vapor deposition) method, 779
PMMA (polymethyl methacrylate), 706
PMT (photomultiplier tube), 796, 798
PN diode, 801
p-n junction, 1154
P2O5 (phosphorus pentaoxide), 697
Pockels effect, 1018
Pockels electrooptic effect, 304

electrooptic properties, 305, 307
for amplitude modulators, 312
for phase shifters, 310
for retarders, 311

POCl3 (phosphorus oxychloride), 777
Poincaré, Henrie, 451
Poincaré sphere, 451

constant � and ε lines, 465
converted from Argand diagram, 469
fabrication of a Poincaré sphere, 483
for solving polarizer problems, 485
for solving retarder problems, 479
how to construct, 451
how to use, 451
lines of constant ε, 458, 478
lines of constant �, 455, 479
traces of, 490
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Point-by-point writing of photoinduced Bragg
grating, 744

Point spread function, 14
in cylindrical coordinates, 243
in rectangular coordinates, 14

Polariscope, 95, 363, 415
Polarizers, 362

based on bending optical fibers, 404
based on scattering, 408
dichroic, 394
pile-of-plates, 407
polarizing beam splitter (PBS), 412
polaroid sheets, 399

Polarization
azimuth of, 366
circular, 364
elliptical, 364
linear, 363

Polarization dependent optical isolator, 328
Polarization, electrical, 264, 266
Polarization diversity method of detection, 822
Polarization gradient laser cooling, 255
Polarization independent optical isolator, 330
Polarization jitter, 363, 819
Polarization jitter controls, 819
Polarization-maintaining fibers (or preserving),

404, 707, 819
Polarization microscopes, 363
Polarizing beamsplitter (PBS), 412, 822, 830
Polaroid polarizer, 399
Polygonal mirror, 101
Polyimide half-wave-plate (�/2 plate), 677
Polymer-dispersed liquid crystal (PDLC) type

spatial light modulator (SLM), 352
Polymethyl methacrylate (PMMA) for plastic

fibers, 706
Population difference of carriers, 860
Population inversion of carriers, 836
Population inversion factor, 847, 864
Position vector, 6
Positive birefringence, 267
Positive carrier, 1153
Potassium bromide (KBr), 708
Potassium chloride (KCl), 708
Potassium dihydrogen phosphate (KDP)

elastooptic properties of, 321
electrooptic properties of, 305, 316, 1018

Power budget (requirement), 1130, 1144, 1148
Power density handling capability of fiber

amplifiers, 866
Power density-interaction length for nonlinear

effects, 816
Power dividers, 673
Power intensity, 114
Power level parameter for nonlinearity, 1041
Power required to establish a fundamental soliton,

1071
Power saturation of EDFA, 838

Power scrambler for optical networks, 677
Power transmittance k of a polarizer, 485
Poynting vector, 114, 117, 118, 124, 125, 275, 283
ppb (parts per billion) (10�9), 695
PPM (pulse position modulation), 1088, 1094
PR, see Photorefractive effect
Practical aspects of Fabry–Pérot interferometers,

234
Practical aspects of optical fibers, 693
Praseodymium-doped fiber amplifier (PDFA), 836
Preform rod, optical fiber, 775, 777, 837
Preheating ends of fiber before splicing, 790
Preventing glare, 412, 419
Primitive (basic) communication system, 1101
Principal axes of an ellipse, 303, 431, 433, 434
Principal mode number of graded-index fibers,

768, 771
Principal section, 277, 278
Principal strains, 318
Principle of conflection, 667
Prisms, polarizing, 402
Probability of spontaneous emission, 836
Probes to detect evanescent fields, 154
Projection, back, 469
Propagation

constant, 4, 607, 612, 728, 729, 759, 768, 1055
direction of, 1, 2, 5, 7, 9
vector, 4, 5

Propagation in anisotropic media, 263
in uniaxial crystals, 270, 272

Pros and cons of 1.48-�m and 0.98-�m pump
light, 853

Proton-bombarded region, 935
Pseudoscopic image, 85, 87, 89
PSK (phase shift keying), 1089, 1095
p-type semiconductor, 1151, 1153
Pulfich’s refractometer, 164
Pulse amplitude modulation (PAM), 1088, 1094
Pulse broadening compensation in optical fibers by

four-wave mixing, 537
Pulse code modulation (PCM), 1084, 1089, 1094
Pulse duration modulation (PDM), 1088, 1094
Pulse modulation, 1094
Pulse position modulation (PPM), 1088, 1094
Pump light of optical amplifiers, 834, 835, 837, 844
Pyrometer, 800
PZT (piezo transducer), 176, 207, 213, 215

q parameter, 209, 214, 216, 221, 222
Q of the cavity, 194
QAM (quadrature amplitude modulation), 1087,

1090
Quadratic electrooptic coefficients, 316
Quadratic phase factor, 48, 49, 559
Quadrature amplitude modulation (QAM), 1087,

1090
Quadrature component, 810, 1090
Qualitative explanation of laser oscillation, 908
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Quantization of the propagation constant in
graded index fibers, 766

Quantum dot laser, 1002
Quantum efficiency, 797, 803, 804, 831, 951
Quantum energy, 249
Quantum limited, 1116
Quantum size effect, 999
Quantum-well laser, multi-, 933, 945, 984
Quantum wire laser, 999
Quarter-wave fiber loop, 382, 383
Quarter-waveplate

function of, 371, 377, 386, 394, 480, 822
generate circular polarization by, 386
how to use, 386, 389, 392, 393
Jones matrix of, 424
optical fiber, 382
problems associated with, 394, 480, 483,

493
Quartz crystal (SiO2), 412, 414, 447

electrooptic properties, 305
rotary power, 412, 414, 448

Quasi-Fermi levels, 898, 994
Quasi-Gaussian beam, 221
Quasi single longitudinal mode laser, 909

Radiation patterns
antenna, 13, 95
from a half wave dipole, 103

Radiation pressure, 166
of laser light, 249
of photons, 254

Radiation sensitive optical fiber, 698
Radiation therapy, 698
Radius of curvature of the wavefront of Gaussian

beams, 208
Raised resistivity by proton bombardment,

934
Raman, 818

amplifier, 818
fiber laser, 1009
oscillator, 818
scattering, 816, 817
spectrum, 818

Rate equations for the three-level model of Er3C,
848

Rate equations of semiconductor lasers, 909
Rate of transitions of the carriers, 841
Ray, 275

direction of, 275, 299
path, 277
velocity diagram, 579

Ray theory, 759
Rayleigh range of a Gaussian beam, 209
Rayleigh resolution criteria, 151
Rayleigh scattering, 694, 408, 448
Rayleigh–Sommerfeld diffraction formula, 54, 58,

59, 545
Real image, 85, 87

Real time correlation, 77
of joint transform correlator (JTC), 77
of Vander Lugt correlator (VLC), 77

Reciprocity theorem, 713
Recombination of electrons and holes, 898
Rectangle function, 20

Fourier transform of, 20
Rectangular optical waveguide, 605, 655, 670
Reflectance

at arbitrary incident angle, 124
at normal incidence, 117

Reflected waves, 113
Reflecting telescope, Cassegrain, 107, 108
Reflection coefficients, 113, 114

at arbitrary incident angle, 118
electrical (at normal incidence), 113, 114
magnetic (at normal incidence), 113, 114

Reflection coefficient for total internal reflection,
135

Reflection finesse, 194
Reflection of e-waves

from anisotropic boundaries, 294
in the case of total internal reflection, 295, 296

Refractive index, see Index of refraction
Refractive index gradient constant of Selfoc fibers,

763, 771
Relative core index step , 758
Relative magnetic permeability, 111
Relaxation oscillation of laser diodes, 916, 917,

930
Relaxation time of laser diodes, 1013
Repeater stations, 833, 1081
Required frequency bandwidth for amplifying

digital signals, 1139
Resolution

of lens-type microscopes, 150
of scanning near field optical microscope

(SNOM), 154
Resolving power of Fabry–Pérot resonators, 192,

194
Resonance of Fabry–Pérot resonators, 167

condition, 174
frequency of pth longitudinal mode, 232, 233
wavelength, 178

Responsivity R
of photomultiplier tubes, 798
of PIN and APD photodiodes, 803, 805

Retardance, 310, 365, 367, 431, 437, 579, 587
measurement of, 392, 393
microbes’ pattern of, 363

Retarded time frame, 1064
Retarder, 310, 365, 378, 587
Revere, Paul, 1085
Return to zero (RZ) code, 774, 1096, 1141
Rhodamine 6G dye, 357, 894
Rib guide, 670
Ribbon fiber cable, 785, 786, 790
Ridge guide, 670
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Ring-type fiber laser, 1004
Ring type solid state laser, 904, 967
Rise time of laser diode turn-on, 930
Rise-time requirement, 1132, 1145
Rochon prism, 404
Rotary power, 412, 414

dextrorotary (right-handed) or d-rotary, 412
leverotary (left-handed) or l-rotary, 412

Rotation and scaling of the input image in signal
processing, 73

Rotation
of coordinates, 309, 314
of linearly polarized waves by the Faraday

effect, 327
of major axes of an ellipse, 303
of polarization, 327, 412

Rotators, 365, 412
Faraday effect, 326
Fresnel’s explanation of, 413
optical activity, 412
saccharimeters, 417

Rubber eraser, 303, 323
Ruby laser, 894
Rutile (TiO2), elastooptic properties of, 321
RZ (return to zero) code, 774, 1096, 1141

S (sulfur), 936
S/N (signal to noise ratio), 1115, 1139
s wave (perpendicular, senkrecht in German) wave,

118, 157
Saccharimeter, 414, 417
SAM (stress-applying member), 707
Sampled function, 31
Saturated back-biased current, 1102, 1158
Saturation signal power intensity, 853, 856, 857
SBS (stimulated Brillouin scattering), 512, 602,

815, 817
Scalar wave approach, 53
Scanning electron microscope (SEM), 98, 161
Scanning of Fabry–Pérot cavities, 176

by angle of incidence, 184
by frequency of incident light, 190
by index of refraction, 187
by reflector spacing, 177

Scanning Fabry–Pérot spectrometer, 176
Scanning near-field optical microscopes (SNOM),

154
Scattering cross section, 254
Schlieren camera, 63, 103
Schrödinger equation, 985, 1067
Scott-Russell, John, 1049
Second harmonic generation (SHG), 299, 579, 1018
Second order nonlinear susceptibility, 523, 525,

1018
SE (surface emitting) laser, 956
Selection of light sources, 1011
Selfoc fiber, 763, 766, 770, 772
Selfoc lens, 330

Self-focusing in gain guiding laser diodes, 939, 941
Self-induced transparency due to the soliton effect,

1076
Self-oscillation of optical amplifiers, 838
Self-phase modulation (SPM), 1051, 1052, 1053,

1069
Self-pumped phase conjugation (SPPC), 518
Self-tracking capability of phase conjugate waves,

514, 517
Self-tracking of laser beams, 514
Sellmeier formula, 702
SEM (scanning electron microscope), 98, 161
Semiconductors

acceptor atoms, 1153
bandgap energy, 804, 901, 925, 945, 996, 998
carrier concentration, 930
carrier confinement, 930
conduction band, 1151
density of states, 898, 987
donor atoms, 1152
effective mass, 924
Fermi energy level, 898, 1151, 1152
Fermi occupancy probability function, 1151
heterojunction, 930
intrinsic layer, 1151
n-type semiconductor, 1151, 1152
p-type semiconductor, 1151, 1153
p-n junction, 1154
quantum wells, 933, 984, 999, 1002
spontaneous emission, 254, 835, 836, 841, 842,

1007
stimulated emission, 835, 836
valence band, 1151

Semiconductor laser amplifier (SLA), 837, 838,
847, 895, 1085

compared to EDFA, 838
Semidegenerate four-wave mixing, 533
Senarmont method for measuring retardance, 392,

491, 587
Senarmont prism, 404
Senkrecht wave (perpendicular, s wave), 118
Sensing strain, vibration, and temperature by

optical fibers, 747
Sensitivity of photomultipliers, 797
Sensors, 747, 1012
Separation of variables, 1022, 1160
SF6 (sulfur hexafluoride) for chemical lasers, 895
Shadowgrams, 97
Shah function, 30

Fourier transform of, 31
Shearing strain, 318
SHG (second harmonic generation), 299, 579, 1018
Shift keying, 1095
Shifting theorem of the Fourier transform, 36
Short-wavelength-loss edge (SLE), 697
Shot noise, 1113
Shot noise limited, 1116
Shot noise power, 876
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SiCl4 (silicon tetrachloride), 777
Side pit fiber, 707
Side scan sonar, 96
Side tunnel fiber, 707
Sifting property of the υ-function, 29
Sigma laser, 1004, 1005
Sign conventions, 3, 368
Sign functions, 25

Fourier transform of, 25
Signal saturation intensity of EDFA, 853, 856
Signal-spontaneous beat noise, 871
Signal to noise ratio (S/N), 1115, 1139

for ASK modulation, 1121
for homodyne detection, 1122
for thermal noise limited case, 1131
of output from PIN photodiodes, 876

Silica core flourine-added cladding fiber, 705
Silicon dioxide (SiO2)-based fiber, 708
Silicon tetrachloride (SiCl4), 777
SiO2 (quartz), 305, 412, 681
Sinc function, 21
Sine-Gordon equation, 1076
Single crystal mixer, 814
Single heterojunction, 930
Single longitudinal mode (SLM) laser, 907, 956
Single-mode fiber (monomode), 700, 705, 728
Single-mode laser, 909
Single-mode optical guide, 612
Single sideband (SSB) modulation, 1087, 1090
Sketching hybrid mode patterns in optical fibers,

732
Sketching linearly polarized mode patterns in

optical fibers, 735
Skew modes in optical fibers, 721
Skew rate, 1125
Skew ray in optical fibers, 693
SLA, see Semiconductor laser amplifier
Slab optical guide, see Optical slab guides
SLE (short-wavelength-loss edge), 697
Slipping-buffer layer in optical fiber cables, 783
Slit, apodized, 22
SLM (spatial light modulator), 349, 350, 351, 352
SLM (single longitudinal mode) laser, 907, 956
Slow axis of retarder, 367
Slowly varying envelope approximation (Bohr

approximation), 529
Small signal amplitude modulation, 916
Smectic liquid crystal, 341

“A” type, 343
“C” type, 343, 354, 356

S/N (signal to noise ratio), see Signal to noise ratio,
Snell’s law, 110, 112, 113, 121, 135, 292, 565, 566

in k-coordinates, 145, 164
Snitzer proposal, 723
SnO2 (tin dioxide) transparent electrode, 311
Sodium chlorate (NaClO3), optically active, 412
Sodium chloride (NaCl), 341, 708

Sodium oxide (Na2O) to lower the melting point of
glass, 706

SNOM (scanning near field optical microscope),
154

MSolc filters, 385
Soleil compensator, 382
Solid-state laser, 893, 894, 895, 967
Soliton, 1049

collisions of, 1070
envelope function, 1059, 1064
fundamental mode, 1069, 1071
generation of, 1050, 1052
history of, 1049
optical communication system, 1073, 1077
period, 1070, 1077
(pulse width) ð (amplitude) product, 1073, 1077
waves, 1017, 1052, 1056, 1081

Sommerfeld, see Rayleigh–Sommerfeld diffraction
formula

Soot, 779
Space charge polarization, 265
Spatial derivative operation in image processing, 64
Spatial filters, 61

derivative operation, 64
high pass, 63
low pass, 62
phase contrast, 63

Spatial frequency, 1, 4, 8
approaches in Fourier optics, 52
components, 60

Spatial hole burning, 968, 969, 1004, 1007
Spatial light modulator (SLM), 349, 350, 351, 352
Spatial mapping of microwave radiation, 343
Spectral hole burning, 945
Spectral lineshape, 839
Spectral measurements by Fabry–Pérot resonator

without reflector spacing, 203
Spectroscopy, 4
Spectrum of laser diode emission, 920
Splicing fibers, 786, 866
Splicing losses, 790, 1130, 1138, 1146
Split field polarizer as an analyzer, 418
SPM (self-phase modulation), 1051, 1052, 1053,

1058, 1069
Spontaneous emission, 254, 835, 836, 841, 842,

1007
Spontaneous emission lifetime, 254, 842, 926
Spontaneous–spontaneous beat noise, 871, 872,

875
SPPC (self-pumped phase conjugation), 518
SRS (stimulated Raman scattering), 512, 818, 1009
SSB (single sideband) modulation, 1087, 1090
SSG (superstructure grating) laser diode, 977, 979
Stability condition of cavity resonators, 231, 234
Stable operation of optical tweezers, 253
Standardized Japanese system for telephone bit

rate, 1102
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Standardized U.S. system for telephone bit rates,
1102

Standing-wave boundary condition, 1161, 1163
Standing wave patterns, 89, 135, 235, 615, 636,

637, 969
Star coupler, 678
State of polarization, 371

graphical solution of, 365
Static energy of induced polarization, 345
Steady-state solutions of rate equations, 911
Step and repeat function, 31, 64
Step function, 25

Fourier transform of, 25
Step index fiber, theory of, 709
Step index multimode fiber, 703, 709, 1139
Stereoscopic motion picture, 362
Stimulated Brillouin scattering (SBS), 512, 602,

815, 817
Stimulated effects, 816
Stimulated emission, 835, 836, 842
Stimulated emission cross section, 843, 859
Stimulated Raman scattering (SRS), 512, 818, 1009
Stokes radiation, 816, 1009
Stopper layer of electrode structure, 681
Strain, 318

fiber sensor, 747
free, 304
principal, 318
shearing, 318

Stranded cable, 784, 786
Stranding pitch, 784
Streak camera, 798
Streak pattern due to edge diffraction, 25
Stress-applying member (SAM), 707
Stripe substrate laser, 936
Strip-loaded guide, 671
Strongly coupled quantum wells, 988
Subcarrier frequency, 1099
Substrate, 606
Sucrose (C12H22O11), 412
Sulfur (S), 939
Sulfur hexafluoride (SF6) for chemical lasers, 895
Summary of essential formulas for calculating

states of polarization, 439
Summary of transformations of Gaussian beams by

a lens, 219
Sunglasses, 362
Superheterodyne radio, 807
Superposition, law of, 549, 1070
Superstructure grating, 978
Superstructure grating (SSG) laser diode, 977, 979
Surface acoustic wave (SAW) light deflector, 324
Surface acoustooptic modulator, 99
Surface-emitting diode LED, 1008
Surface-emitting (SE) laser, 956
Surface wave, 135
Susceptibility

electric, 266

nonlinear, 511, 523, 1018
tensor, 266

Switching electrodes, 685
Symmetric guide, 606
Symmetric matrix, 430
Synchronous homodyne receiver, 818
Synthetic aperture holography, 97
System loss, 1130

3Rs of repeaters, 833
TAT 1 (Trans Atlantic Transmission), 693
Taylor series expansion, 538, 1063
TDM (time division multiplexing), 1085, 1094,

1100
TE (transverse electric) wave, 607, 620, 719,

1030
TE0� mode, 720, 721, 732
Teleaxicon, 245
Telephone bit rates, standardized U.S., 1102
TE-like modes, 656
Tellurium dioxide (TeO2), elastooptic properties of,

100, 322
TEM00 Gaussian mode, 226, 253
TEM11 Gaussian mode beam, 226, 253
Temperature dependence of L-I curves of laser

diodes, 951
Temperature effect on the wavelength of laser

diodes, 945
Temperature fluctuations measured by optical

fibers, 747
Temporal frequency f, 4
Tensor susceptibility, 266
TeO2 (tellurium dioxide), 100, 322
Terminal contact resistance, 920
Terminal potential, 928
Terraced substrate (TS) laser diode, 936
TE–TM converter, 502, 594, 685
Tetrahedral substrate, 666
TFT (thin film transistor), 350
Thallium bromide (TlBr), 708
Thallium monoxide (Tl2O) to lower the melting

point of glass, 706
Thermal noise, 876, 1114
Thermal noise limited, 1116
Thermister, 800
Thin emulsion holograms, 88, 108
Thin film transistor (TFT), 350
Third-order dispersion effect, 755
Third-order nonlinear electric susceptibility, 523,

527, 1018
Three-dimensional displays, 92
Three-layer optical guide with a linear core and

nonlinear identical claddings, 1038
Three-level material, 836
Threshold carrier density, 927
Threshold current, 909, 928, 930
Threshold electron density, 928
Threshold gain, 928
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Threshold light intensity of pump light, 860
Thulium (Tm3C) for upconversion fiber amplifiers,

889
Time constant of photomultipliers, 798
Time constant of relaxation oscillation, 917
Time degradation of LD output power, 1130
Time-dependent solutions of rate equations, 859,

914
Time division multiplexing (TDM), 1085, 1094,

1100
Time reversed videotape, 504
Time reversed wave, 507
Tin dioxide (SnO2) transparent electrode, 311
TiO2 (rutile), 321
Titanium doped indium phosphide (InP:Ti), as a

Kerr medium, 512
TJS (transverse junction stripe) laser, 936
Tl2O (thallium monoxide) to lower the melting

point of glass, 706
TlBr (thallium bromide), 708
Tm3C (thulium) for upconversion fiber amplifiers,

889
TM (transverse magnetic) mode, 607, 719, 722
TM-like modes, 656, 657, 659
TM0� mode, 732
TM0 mode of optical guides (dominant mode), 612
TM–TE converter, 497, 498
TN (twisted nematic) liquid crystal, 344, 350, 351,

359
TNSLM (twisted nematic liquid crystal spatial

light modulator), 349
Top layer of electrode structures, 680
Topographic images obtained by AFM, 160
Total internal reflection

of e-waves, 285, 296, 298
of o-waves, 130, 145, 147, 605
reflection coefficient for, 135

Transcendental equations, 611, 639
Transfer length of optical couplers, 651
Transformation of Gaussian beams by lenses, 214
Transformation of q parameters by lenses, 215
Transimpedance circuit (TZ), 1109, 1110, 1136
Transistor–transistor logic (TTL), 1124
Transition energy, 254
Transmission coefficients

at arbitrary incident angle, 118
at normal incidence, 114
electrical, 113, 114
magnetic, 113, 114

Transmission loss of fibers, 694
Transmission matrix method, 606, 622, 625, 626,

630
Transmittance

at arbitrary incident angle, 124
at normal incidence, 117

Transmitted waves, 113
Transmitters, 893
Transmitting satellite, 259

Transoceanic fiberoptic submarine communication,
1017

Transparent electrodes, 188, 311
Transverse electric (TE) wave, 607, 620, 719, 1030
Transverse external electric field to bulk waves,

681
Transverse junction stripe (TJS) laser, 936
Transverse magnetic (TM) wave, 607, 719
Trapping micron-sized dielectric spheres, 249
Triangle function, 21

Fourier transform of, 22
Trimming electrodes, 684
Triple-photon excitation, 889
Trunk lines, 786
TS (terraced substrate) laser diode, 936
TTL (transistor–transistor logic), 1124
Tunable optical coupler, 740
Tunable optical filter

electrically, 188, 189
optically, 341

Tuning of the wavelength of a laser diode
by Bragg reflector tuning current Ib alone, 973
by combining Ip and Ib, 975
by phase controller tuning current Ip alone, 973

Turn-on characteristics of laser diodes, 920
Turn-on delay time of laser diodes, 909, 914, 926,

930
Turpentine (C10H16), optical activity of, 412
Twisted nematic (TN) liquid crystal, 344, 350, 351,

359
Twisted nematic spatial light modulator (TNSLM)

liquid crystal, 349
Two-frequency method to remove phase jitter,

823
Two-stage processes to fabricate optical fibers, 775,

837
Two stage process to fabricate erbium doped fibers,

837
Two-wave mixing gain of photorefractive

materials, 518
Tyndall, John, 692
Types of optical fibers, 703
TZ (transimpedance) circuit, 1109, 1110, 1136

U-groove cable, 786
Unbounded field, 627
Unclamped condition, 304
Undersea transmission cable, 833
Unfolded, manipulation of conflection, 666, 667
Uniaxial crystals, 267

condition of propagation in, 272
graphical solution of propagation in, 270
propagation inside, 270

Unit fiber cable, 784
Unit vector for the direction of propagation, 7
Unpolarized (depolarized) wave, 364
Upatnieks hologram, see Leith–Upatnieks type

hologram
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Upconversion fiber amplifier, 889
Upper limit on the modulation frequency of a laser

diode, 909, 920, 930
U.S. standard rating DS-4 PCM, 1145
UV laser beam, 744
UV-light-cured resin, 697

V shape fiber loss curve, 694
VAD (vapor-phase axial deposition) method, 778,

780, 781
Valence band, 899, 998, 1151
Values of sin to determine the handedness of

elliptical polarization, 375
Vanadium tetrachloride (VCl4), 777
Van der Waals forces, 341
Vander Lught correlator (VLC), 64, 66
Vapor-phase axial deposition (VAD) method, 778,

780, 781
VCl4 (vanadium tetrachloride), 777
VCSEL (vertical cavity surface-emitting laser),

957, 981
Vector propagation constant, 4
Velocity matched Mach–Zehnder interferometer,

683
Velocity of the envelope, 748
Velocity surface of Huygens’ wavelet ellipsoid,

578
Verdet constant, 327
Vernier effect, 977
Vertical cavity surface-emitting laser (VCSEL),

957, 981
Vertical external field in adjacent embedded guides,

683
Vertical external field

in embedded guides, 683
periodic, 684

Very near field, 150
Vestigial sideband (VSB) modulation, 1087, 1091
V-groove fiber, 786
V-grooved substrate buried heterostructure (VSB)

laser, 936
Vibration fiber sensor, 747
Vibration measurement by holography, 95
Virtual image, 84
VLC (Vander Lugt correlator), 64

compared to JTC, 72
Voice channels, number of, 1102
Voice recognition, 77
Volume hologram, 87
VSB (vestigial sideband), 1087, 1091
VSB (V-grooved substrate buried heterostructure)

laser, 936

W guide, 635
Waist location of Gaussian beams, 208

emergent from lenses, 217
Waist size of Gaussian beams, 208

emergent from lenses, 216

Water (H2O)
as a nonlinear medium, 1017
as a polarized medium, 266
elastooptic properties of, 320
Kerr constant of, 316, 317

Wave equations in cylindrical coordinates, 709, 710
Wave expressions of light, 132
Wavefront, 276
Waveguide, see Optical waveguides
Waveguide dispersion of optical fibers, 699, 701,

752
Waveguide index, optical fiber, 750
Wavelength, 4, 8, 110, 112
Wavelength converter, 352
Wavelength division multiplexing (WDM), 191,

674, 676, 1085, 1098, 1175
Wavelength filter, 684
Wavelength matching, 113
Wavelength-selective insertion into a WDM, 747,

1175
Wavelength-selective tapping in a WDM, 747
Wavelength shift of radiation from laser diodes,

943
Wavenormal, 275, 295, 759, 761, 762

and Snell’s law, 292
Wavenumber, 177, 890
Wave optics approach, propagation in planar

optical guides, 606, 607
Waveplate, 379

fiber type, 382, 383, 385
full, 385
half, 385
how to use, 385, 386, 389, 392, 393
quarter wave, 371, 377, 382, 386, 389, 393, 394,

480, 483, 493, 822
Wavevector method to analyze waves in

anisotropic media, 264, 282
diagram of, 283, 284

WDM (wavelength division multiplexing) system,
191, 674, 676, 1085, 1098, 1175

Weakly coupled quantum wells, 988
Weakly guiding approximation, 722, 726
Weyl expansion theorem, 545
White light hologram, 87
Wollaston polarizing prism, 404
Work function, 796
Writing photoinduced Bragg gratings in optical

fibers, 742, 744

Xe2 (Xenon) as medium for excimer lasers, 894
X-ray analysis, 89, 97
X-ray crystallography, 13

Y-cut crystal, 307, 312
Y junction, 673
YAG (yittrium aluminum garnet) laser, 101, 894,

967
Y-branch laser diode array, 983
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Y3Al5O12 (YAG) yittrium aluminum garnet, 101,
894, 967

Y3Fe5O12 (YIG) yittrium iron garnet, 329, 330
YIG (yittrium iron garnet), 329, 330
Yittrium aluminum garnet (YAG), 101, 894, 967
Yittrium iron garnet (YIG), 329, 330

ZBLAN fiber, 889
Z-cut crystal, 307
Zero gain electron density N˛ of laser media,

902
Zeroth-order Bessel functions of the second

kind, 714

Zinc (Zn), 936
Zinc chloride (ZnCl2), 708
Zinc oxide (ZnO), electrooptic properties

of, 306
Zinc sulfide (ZnS), elastooptic properties

of, 320
Zinc telluride (ZnTe), electrooptic properties

of, 306
Zn (zinc), 936
ZnCl2 (zinc chloride), 708
ZnO, see Zinc oxide
ZnS, see Zinc sulfide
ZnTe, see Zinc telluride


