А.А. Белоусов^{1,2},
Ю.Н. Вольхин¹,
А.В. Гамиловская^{1,2},
А.А. Дубровская¹

Теоретическое и экспериментальное моделирование сверхширокополосных аналоговых радиофотонных трактов дециметрового, сантиметрового и миллиметрового диапазонов длин волн

¹ОАО «Центральное конструкторское бюро автоматики», г. Омск, <u>ckba@omsknet.ru</u> ²ФГБОУ ВПО «Омский государственный технический университет», г. Омск

Введение

Одной из основных прикладных задач радиофотоники является создание сверхширокополосных аналоговых волоконно-оптических линий передачи (ВОЛП) с верхними границами диапазона рабочих частот (ДРЧ) до 40 ГГц и выше. Такие ВОЛП являются довольно сложными комплексными устройствами, в состав которых входят сверхширокополосные электрические тракты, ДРЧ которых перекрывают, как правило, верхнюю часть дециметрового диапазона длин волн (ДДВ), весь сантиметровый ДДВ и нижнюю часть миллиметрового ДДВ, устройства элекрооптического преобразования (электрооптические модуляторы), устройства оптоэлектронного преобразования (фотодетекторы), фотонные тракты, а также аппаратура кодирования/декодирования. В данном докладе будут представлены результаты теоретического и экспериментального моделирования "элементарной ячейки" любой аналоговой ВОЛП - радиофотонного тракта (РФТ).

Результаты теоретического и экспериментального моделирования

Типичная схема структурная РФТ с внешней модуляцией приведена на рис.1.

Рис. 1. Схема структурная простейшего РФТ: ЛД - лазерный диод; ММЦ - модулятор Маха-Цандера; ОВТ - оптоволоконный тракт; ФД - фотодетектор; ЭОМ - электрооптический модулятор

В данном случае в состав РФТ входят следующие элементы: - лазерный диод (ЛД);

- электрооптический модулятор (ЭОМ), который реализован по принципу интерферометра Маха-Цандера и потому называется модулятором Маха-Цандера (ММЦ);

- оптоволоконный тракт (OBT);

- фотодетектор (ФД).

При проведении теоретического моделирования РФТ будут использоваться следующие параметры данных элементов:

- мощность (Роп.1) и амплитуда (Uon.1) оптического сигнала на выходе ЛД;

- полуволновое напряжение и потери в оптическом тракте ММЦ (Uπ и Кз.ммц соответственно);

- потери в ОВТ (Кз.овт);

- чувствительность ФД (Пф).

В [1] была приведена возможная методика расчёта коэффициента передачи РФТ от СВЧ входа ММЦ до СВЧ выхода ФД (Кп.рфт, рис.1). По этой методике были рассчитаны зависимости Кп.рфт от величины U π при различных значениях Кз.ммц (рис.2), при различных значениях Пф (рис.3) и при различных значениях Роп.1 (рис.4) для случая амплитуды входного сигнала СВЧ (UBx(t), рис.1) Uсвч.вх = 7 мВ и Кз.овт = 3 дБ. Из этих рисунков видно, что Кп.рфт возрастает с уменьшением U π , причём при U $\pi \le 1$ B и Pon.1 ≥ 200 мВт Кп.рфт может стать положительным, или другими словами, РФТ может выполнять функцию СВЧ усилителя.

Однако при уменьшении Uπ могут возникнуть некоторые проблемы. Рассмотрим природу этих проблем.

Из [1] следует, что зависимости фазового сдвига $\Delta \varphi$ в выходном Yсветвителе MMЦ (рис. 5а, поз.*6) и коэффициента передачи оптического тракта MMЦ (Кр.ммц, рис.1) от напряжения на электродах управляющей линии (Uэул, рис. 5) выглядят так, как это показано на рис. 6а и 6б соответственно. Из рис. 6б следует, что MMЦ - в силу нелинейности своей модуляционной характеристики - может быть "источником" мощных нелинейных искажений. Эти искажения можно минимизировать, если процесс модуляции в MMЦ осуществлять при некотором оптимальном начальном значении $\Delta \varphi$. Очевидно, что величина этого оптимального фазового смещения ($\Delta \varphi$.см) составляет 90° (или -90°). Физически это смещение можно осуществить, например, так, как это показано на рис. 56 подачей на электроды управляющей линии (ЭУЛ) напряжения смещения Ucм = $U\pi/2$ (или - $U\pi/2$) при помощи внешней цепи подачи напряжения смещения (ЦПНС). В этом случае временная развёртка Роп.2 будет выглядеть так, как это показано на рис. 76.

Оценим зависимость уровня нелинейных искажений в тракте РФТ от соотношения амплитуды входного сигнала (Uсвч.вх, рис. 7в) к значению U π . Очевидно, при что Uсвч.вх > U $\pi/2$ искажения будут заметны даже визуально (рис. 8). Поэтому было принято решение проанализировать возможные уровни искажений при изменении отношения Uсвч.вх/U π от 0.05 до 0.5 с шагом 0.05.

Рис. 2. Зависимость Кп.рфт (рис. 1) от Uπ при Uсвч.вх = 7 мВ, Кз.овт = 3 дБ, Pon.1 = 20 мВт, Пф = 0.6 А/Вт и при различных значениях Кз.ммц (*1 - Кз.ммц =10 дБ, *2 - Кз.ммц =9 дБ, *3 - Кз.ммц =8 дБ, *4 - Кз.ммц = 7 дБ, *5 - Кз.ммц = 6 дБ, *6 - Кз.ммц = 5 дБ, *7 - Кз.ммц = 4 дБ,)[1]

Рис. 3. Зависимость Кп.рфт (рис. 1) от Uπ при Uсвч.ex = 7 мВ, Кз.овт = 3 дБ, Pon.1 = 20 мВт, Кз.ммц = 6 дБ и при различных значениях Пф (*1 - Пф = 0.4 A / Bm, *2 - Пф = 0.6 A / Вт, *3 - Пф = 0.8 A / Bm, *4 - Пф = 1.0 A / Bm, *5 - Пф = 1.2 A / Bm)[1]

Рис. 4. Зависимость Кп.рфт (рис. 1) от Uπ при Uсвч.вх = 7 мВ, Кз.овт = 3 дБ, Кз.ммц = 6 дБ, Пф = 0.6 А / Вт и при различных значениях Pon.1 (*1 - Pon.1 = 25 мВт, *2 - Pon.1 = 50 мВт, *3 - Pon.1 = 100 мВт, *4 - Pon.1 = 200 мВт)[1]

Рис. 5. Схематическое изображение ММЦ на пластине из сегнетоэлектрика: *1 - пластина из сегнетоэлектрика; *2 - входной световодный канал; *3 - входной Y-разветвител; *4, *5 первый и второй параллельные световодные каналы; *6 - выходной Y-светвитель; *7- выходной световодный канал; *8, *9 - первый и второй электроды управляющей линии CBY; 10 - внешняя ЦПНС

Рис. 6. Зависимость Кр.ммц (рис. 1) и $\Delta \varphi$ (рис. 5) от Uэул (рис. 5)

Рис. 7. Модуляция оптического сигнала в ММЦ (рис. 1,5) при Ucm = $+U\pi/2$ и Ucbu.ex $< U\pi/2$

Рис. 8. *Модуляция оптического сигнала в ММЦ (рис.1,5) при Uсм* = $+U\pi/2$ и Uсвч.вх > $U\pi/2$

На каждом шаге анализа по предложенной в [1] методике (рис. 9) определялась форма временной развёртки оптических и электрических сигналов в различных точках тракта РФТ (рис.1) и, в частности, в различных точках тракта ФД (рис.10): временные развёртки наведённого фототока (Іф, рис. 9в), наведённого напряжения в нагрузке ФД (Ифд, рис. 9г) и собственно выходного сигнала Uвых(t) с амплитудой Uсвч.вых (рис. 9д).

Рис. 9. Формы временных развёрток сигналов в различных точках $P\Phi T$ (рис. 1) при модуляции оптического сигнала в ММЦ (рис. 1,5) при Ucm = $+U\pi/2$ и Ucbu.ex $< U\pi/2$ (рис. 7)

Рис. 10. Схема фотодетектора XPDV3120R производства фирмы "u²t Photonics AG" (www.u2t.com)[1]

А далее с помощью преобразований Фурье [2] рассчитывались спектры развёртки Uвых(t). По результатам всех 10 проведённых преобразований Фурье были построены нормированные зависимости составляющих спектра

временной развёртки выходного сигнала СВЧ с амплитудой Uсвч.вых (рис.9д) при различных соотношениях Uсвч.вх/Uπ (рис. 11).

Рис. 11. Зависимость нормированных амплитуд гармоник выходного сигнала Uвых(t) (puc.1) от соотношения Ucвч.вх/Uπ (шкала Y - логарифмическая)

Далее для каждого из 10 значений отношения Uсвч.вх/Uπ по формуле 1 [2] был вычислен коэффициент нелинейных искажений (Кни).

Кни =
$$\frac{\sqrt{(U_2)^2 + (U_3)^2 + (U_4)^2 + \dots + (U_n)^2}}{U_1} \times 100\%$$
, (1)

где U₂, U₃, U₄, ..., U_n - амплитуды 2,3,4,...,п гармоник соответственно; U₁ - амплитуда первой гармоники.

По результатам проведённых расчётов была построена зависимость Кни от отношения Ucвч.вх /Uπ (рис. 12).

Рис. 12. Зависимость Кни от величины соотношения Uсвч.вх / U π

Из этого рисунка видно, что нелинейные искажения начинают резко возрастать при увеличении отношения Uсвч.вх/Uπ выше 0.1.

Необходимо отметить, что предложенная в [1] методика не позволяет рассчитывать частотные зависимости Кп.рфт или, другими словами, амплитудно-частотные характеристики (АЧХ) РФТ. Данная задача специалистами "инженерного" уровня подготовки в области радиофотоники может быть решена только с использованием соответствующих систем автоматизированного проектирования (САПР), например, таких как САПР фирмы "Optiwave Systems Inc." [3]. К сожалению, авторы этого доклада такими САПР не располагали и потому пользовались следующей упрощённой методикой расчёта АЧХ.

В справочных материалах на ММЦ, как правило, даётся значение U π , измеренное при постоянном напряжении и на какой-то относительно низкой частоте (не выше 1 ГГц, как правило). Поэтому даже имея графики рис. 2, 3, 4, мы не сможем рассчитать Кп.рфт, например, на частотах 20 ГГц или 30ГГц. Однако в тех же справочных данных приводится значение так называемого "E/O Bandwidth (-3dB)", которое фактически указывает частоту, на которой модуляционная способности ММЦ снижается на 3 дБ относительно модуляционной способности того же ММЦ на какой-либо относительно низкой частоте. Например, в справочных данных на ММЦ LN05S-FC фирмы "Thorlabs" [4] указано, что модуляционная способность данного ММЦ снижается на 3 дБ при изменении частоты входного сигнала со 130 МГц (т.е. фактически постоянного управляющего напряжения) до 30-35 ГГц. При этом данное снижение, как правило, имеет достаточно монотонный и практически линейный характер.

Аналогичные характеристики - только по снижению детектирующей способности - приводятся в справочных данных на ФД. Например, для ФД XPDV3120R фирмы "u2t Photonics AG" [5] приводится значение так называемого "3dB cut-off frequency": 68-75 ГГц, а кроме того, снижение детектирующей способности (в данном случае - Frequency Response) проиллюстрировано графически (рис. 13).

Рис. 13. Зависимость уровня детектирующей способности ФД XPDV3120R фирмы "u2t Photonics AG" от частоты выходного продетектированного сигнала CBЧ

Таким образом, АЧХ РФТ можно было рассчитать следующим образом: сначала, по приведённым в [1] методикам, рассчитать Кп.рфт на относительно низких (~1 ГГц) частотах по приведённым в справочных данных на ММЦ и ФД значениям U π и Пф, а потом, пользуясь приведёнными всё в тех же справочных данных значениями "E/O Bandwidth (-3dB)" и "3dB cut-off frequency" (или графическими иллюстрациями снижения модулирующей и детектирующей способностей), построить АЧХ в интересующем нас диапазоне частот.

Практика показала, что такая методика позволяет рассчитывать АЧХ с вполне приемлемыми отклонениями от результатов, полученных при измерениях. На рис. 14 приведены две кривые: кривая 1 - результаты измерения, кривая 2 - результаты расчётов. Из этого рисунка видно, что, во-первых, обе кривые имеют практически одинаковый наклон, и во-вторых, разница между ре-

зультатами измерений и результатами расчётов составляет около 3 дБ. При этом последнее обусловлено тем, что при расчётах Кп.рфт использовались справочные значения U π и Кз.ммц (которые превышают значения данных параметров у конкретного ММЦ) и справочное значение Пф (которое ниже значения данного параметра у конкретного ММЦ). Поэтому в случае использования в приведённых в [1] методиках расчётов Кп.рфт не справочных, а реальных значений U π , Кз.ммц и Пф, разница между приведёнными на рис. 14 кривыми, скорее всего, не превышала бы и 1 дБ.

Рис. 14. Измеренная (кривая *1) и рассчитанная (кривая *2) АЧХ РФТ, реализованного с использованием ММЦ и ФД со следующими (приведёнными в справочных данных) параметрами: $U\pi = 4.0 B$, Кз.ммц = 8.1 дБ, "E/O Bandwidth (-3dB)" = 65 ГГц, Пф = 0.6 A/W, "3dB cutoff frequency" = 75 ГГц

Заключение

Таким образом, на основании вышеизложенного можно сделать следующие выводы:

- при уменьшении полуволнового напряжения ММЦ (Uπ) увеличивается коэффициент передачи РФТ (Кп.рфт) и уменьшается динамический диапазон РФТ, причём уровень нелинейных искажений начинает стремительно нарастать при увеличении амплитуды входного сигнала (Ucвч.вх) выше 0.1Uπ;

- предложенные в [1] и данном докладе методики расчёта Кп.рфт и АЧХ РФТ вполне адекватны.

Список литературы

- Вольхин Ю.Н., Гамиловская А.В. О возможности реализации сверхширокополосных аналоговых радиофотонных трактов диапазона СВЧ с положительными коэффициентами передачи // «Материалы XVIII координационного научно-технического семинара по СВЧ технике» (Нижегородская область, п. Хахалы - 2013)
- 2. Баскаков С.И. Радиотехнические цепи и сигналы: М.: Высш. школа., 1983. -536 с.
- 3. www.optiwave.com
- 4. www.thorlabs.com
- 5. www.u2t.com